Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Malen nach Zahlen: Algorithmus rekonstruiert Prozesse aus Einzelbildern

07.09.2017

Forscher am Helmholtz Zentrum München haben eine neue Methode entwickelt, um anhand von Bilddaten fortlaufende biologische Vorgänge, beispielsweise Krankheitsverläufe, zu rekonstruieren. Die Studie erschien in ‚Nature Communications‘.

Die modernen Lebenswissenschaften liefern in immer kürzerer Zeit eine stets größer werdende Menge an Daten. Sie beherrsch- und auswertbar zu machen, ist das Ziel von Dr. Dr. Alexander Wolf und seinen Kollegen am Institute of Computational Biology (ICB) des Helmholtz Zentrums München. Dazu versuchen die Forscherinnen und Forscher, Software zu programmieren, die diese Auswertung übernimmt. Allerdings tun sich dabei verschiedene Hürden auf.


Die neue Methode rekonstruiert aus einzelnen Bilddaten fortlaufende biologische Vorgänge.

Quelle: Helmholtz Zentrum München

„In der aktuellen Studie haben wir uns mit der Fragestellung befasst, wie ein Algorithmus einzelne Bilder in einen kontinuierlichen Prozess einordnen kann“, erklärt Studienleiter Wolf. „So war es bisher zwar möglich, Bildinformation nach klar abgegrenzten Kategorien zu klassifizieren, bei Krankheitsverläufen oder in der Entwicklungsbiologie stößt das aber an Grenzen, weil die Prozesse keine Einzelschritte sondern eben fortlaufend sind.“

Um dem Rechnung zu tragen, bediente sich das Helmholtz-Team der Methode des sogenannten Deep Learning*, also maschinellen Lernprozessen. „Über künstliche neuronale Netze können wir nun Einzelbilder zu Prozessen zusammenrechnen und sie zudem für den Menschen nachvollziehbar abbilden“, sagen Philipp Eulenberg und Niklas Köhler, ehemalige Masterstudenten am ICB und Erstautoren der Studie.

Blutzellen und Netzhäute als Sparringspartner

Um die Leistungsfähigkeit der Methode zu demonstrieren, wählten die Wissenschaftlerinnen und Wissenschaftler zwei Beispiele. Im ersten Ansatz rekonstruierte die Software den kontinuierlichen Zellzyklus von weißen Blutzellen anhand von Bildern aus einem bildgebenden Durchflusszytometer mit einem Fluoreszenzmikroskop. „Ein weiterer Vorteil dieser Betrachtung liegt darin, dass unsere Software so schnell ist, dass man die Entwicklung der Zellen quasi 'on-the-fly' also noch während der Analyse im Zytometer abbilden kann“, erklärt Wolf. „Darüber hinaus macht unsere Software sechsmal weniger Fehler als bisherige Ansätze.“

Im zweiten Experiment rekonstruierten die Forscher den Krankheitsverlauf einer diabetischen Retinopathie.** „Dazu gaben wir unserer Software 30.000 einzelne Bilder von Netzhäuten - sozusagen als Sparringspartner“, erklärt Niklas Köhler. „Dadurch, dass sie die Daten automatisch zu einem kontinuierlichen Prozess zusammenfügt, erlaubt uns die Software, eine Vorhersage für den Krankheitsverlauf auf einer kontinuierlichen Skala zu treffen.“

Und sollten die Daten nicht in einen fortlaufenden biologischen Prozess gehören? „In einem solchen Fall erkennt die Software, dass es sich um ungeordnete Einzelkategorien handelt und verteilt die Messdaten auf einzelne Cluster“, so Wolf. Neben weiteren Anwendungen der Methode wollen Wolf und seine Kollegen in Zukunft weitere Probleme bei der Auswertung biologischer Daten mit Hilfe von maschinellem Lernen lösen.

Weitere Informationen

* Algorithmen des Deep Learning simulieren Lernprozesse, wie sie beim Menschen vorkommen (neuronale Netze) – in etwa so wie ein Kind lernt, Gesichter zu erkennen oder Tiere zu unterscheiden. Das Prinzip funktioniert besonders gut, wenn große Datenmengen (Big Data) zum Training verfügbar sind. Eine der Stärken von Deep Learning ist die Bilderkennung. Zwischen der Eingabe und der Ausgabe sind hier mehr Entscheidungsebenen (layers) zwischengeschaltet als sonst bei neuronalen Netzen üblich, daher der Begriff der Tiefe.

** Diabetische Retinopathie ist die Hauptursache für den frühen Verlust des Augenlichts in der westlichen Welt. Die Diagnose erfolgt normalerweise durch Fachpersonal, was die vier Stadien gesund, mild, mittel und schwer zuordnet. Die Software konnte anhand von 8000 Bildern den Verlauf beziehungsweise die zunehmende Schwere der Krankheit beschreiben, ohne dass sie Informationen zur Ordnungsfolge bekommen hatte.

Hintergrund:
Das Team und Alex Wolf konnte erst kürzlich einen der vorderen Plätze beim Data Science Bowl belegen, einem der weltweit höchstdotierten Wettbewerbe zum Thema Big Data. In ihrem Beitrag hatte das Team einen Algorithmus programmiert, der binnen weniger Millisekunden Lungenkrebs auf Basis von 300 Schichten eines dreidimensionalen Computertomographie (CT)-Scans erkennt – ein Vorgang für den ein Radiologe im schlechtesten Fall mehrere Stunden benötigen würde.

Das ICB befasst sich auch in anderen Zusammenhängen mit dem Thema Deep Learning: Kürzlich stellten die Wissenschaftler in ‚Nature Methods‘ einen Algorithmus vor, der die Entwicklung von Blutstammzellen vorausberechnen kann. https://www.helmholtz-muenchen.de/presse-medien/pressemitteilungen/alle-pressemi... Im Video „Deep Learning Predicts Stem Cell Development“ erklären sie, wie das funktioniert. https://www.youtube.com/watch?v=nZ46-fi8OF4&feature=youtu.be

Original-Publikation:
Eulenberg, P. et al. (2017): Reconstructing cell cycle and disease progression using deep learning. Nature Communications, DOI: 10.1038/s41467-017-00623-3 https://www.nature.com/articles/s41467-017-00623-3

Das Helmholtz Zentrum München verfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.300 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 37.000 Beschäftigten angehören. http://www.helmholtz-muenchen.de

Das Institut für Computational Biology (ICB) führt datenbasierte Analysen biologischer Systeme durch. Durch die Entwicklung und Anwendung bioinformatischer Methoden werden Modelle zur Beschreibung molekularer Prozesse in biologischen Systemen erarbeitet. Ziel ist es, innovative Konzepte bereitzustellen, um das Verständnis und die Behandlung von Volkskrankheiten zu verbessern. http://www.helmholtz-muenchen.de/icb

Ansprechpartner für die Medien:
Abteilung Kommunikation, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - Fax: +49 89 3187 3324 - E-Mail: presse@helmholtz-muenchen.de

Fachlicher Ansprechpartner:
Dr. Dr. Alexander Wolf, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institute of Computational Biology, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel.: +49 89 3187 4217 - E-Mail: alex.wolf@helmholtz-muenchen.de

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterieller Untermieter macht Blattnahrung für Käfer verdaulich
17.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Neues Werkzeug für gezielten Proteinabbau
17.11.2017 | Max-Planck-Institut für biophysikalische Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte