Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Malaria-Medikamente aus Abfall

10.09.2014

Erfolg durch Zusammenarbeit von Chemikern und Ingenieuren

Die derzeit besten Medikamente gegen Malaria können jetzt direkt aus dem Pflanzenabfall der bisherigen Produktion in einem Schritt hergestellt werden.


Vom Abfall zum Malariamedikament - Prof. Peter H. Seeberger (links) und Dr. Kerry Gilmore vor ihrer Entwicklung - ein Photoreaktor, der kontinuierlich aus Abfall Artesunat und drei andere Medikamente produzieren kann.

Einem Team von Prof. Dr. Peter H. Seeberger, Direktor am Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam und Professor an der Freien Universität Berlin, gelang es in Zusammenarbeit mit Prof. Dr. Andreas Seidel-Morgenstern und Kollegen des Max-Planck-Institutes für Dynamik komplexer technischer Systeme, sämtliche Verfahrensschritte zur Produktion der Medikamente, inklusive der Aufreinigung, erstmals kontinuierlich durchzuführen.

Mit der neuen Methode kann jetzt die komplette Medikamentenherstellung direkt im Durchflussreaktor an einem einzigen Ort stattfinden. Die dabei erreichte Reinheit der Medikamente erfüllt die Anforderungen der Zulassungsbehörden. Einen photochemischen Durchfluss-Reaktor zur Produktion von Artemisinin hatten die Wissenschaftler in Berlin bereits vor zwei Jahren entwickelt.

Damals war es dem Team von Prof. Dr. Peter H. Seeberger, den Pflanzeninhaltsstoff Artemisinin des Einjährigen Beifußes (Artemisia annua) nach dessen Extraktion chemisch auch aus dem Abfall der Extraktion herzustellen. Artemisinin ist der Ausgangsstoff für die Malariamedikamente Artemether, Artesunat, Artemol und Dihydroartemisinin. Die jüngsten Erfolge der Berliner, Potsdamer und Magdeburger Chemiker und Ingenieure wurden ausschließlich durch Zuwendungen der Max-Planck-Gesellschaft ermöglicht und gelangen ohne weitere staatliche oder private Unterstützung.

Die Umwandlung des Ausgangsstoffs Artemisinin in Medikamente wurde bisher in pharmazeutischen Unternehmen in der Schweiz, China, und Indien betrieben. Der Anbau und die Extraktion aus der Pflanze Artemisia annua erfolgt dagegen vor allem in China, Vietnam, Madagaskar und Kenia.

„Damit besteht jetzt die Möglichkeit einen weiteren Schritt der Wertschöpfungskette in die Schwellenländer zu verlegen, in denen bisher nur die Pflanze angebaut und extrahiert wird“, sagte Dr. Kerry Gilmore, Gruppenleiter des „Flow Chemistry Teams“ von Peter Seeberger. Noch wichtiger sei es, dass damit die Lieferkette verkürzt werden könne und die Entwicklungsländer die Möglichkeit erhielten, selbst ein dringend benötigtes Medikament herzustellen.

Peter Seeberger betonte: „Unser Ansatz ist die beste Lösung, um die Kosten der Produktion von Malaria-Medikamenten zu senken. Weil wir alle Wertstoffe der Pflanze ausnutzen, ist unser Verfahren deutlich billiger; dadurch gelingt es uns, reinste Medikamente zu produzieren. Wir können einerseits das von den Extrakteuren gewonnene Artemisinin in den Schwellenländern direkt in Medikamente umwandeln und andererseits zusätzlich aus dem Abfall Medikamente herstellen.“ Auf diese Weise würden etwa doppelt so viele Medikamente aus der vergleichbar großen Pflanzenmasse produziert, hob Seeberger hervor. „Wir stärken dadurch die Erwerbsgrundlage der Bauern in den Entwicklungsländern.“

Kommerzielles Interesse an der Technologie ist nach Einschätzung der Wissenschaftler weltweit vorhanden. Peter Seeberger erklärte: „Wir verhandeln zurzeit mit verschiedenen Interessenten über eine Industrieanlage in einem Schwellenland, die bis zu 20 Tonnen Wirkstoff herstellen soll. Unser Ziel ist es, den Preis der Malaria-Medikamente zu senken, egal ob mit oder ohne staatliche oder private Fördermittel.”

Bisher liegen die Kosten der Medikamenten-Produktion höher als der in Afrika erzielbare Verkaufspreis. Den Unterschied tragen Hilfsorganisationen und Stiftungen wie die Weltgesundheitsorganisation oder die Clinton Foundation. Die Medikamente werden in einem letzten Schritt mit einem weiteren bekannten Wirkstoff zu sogenannten Artemisinin-Kombinationstherapien mit dem Ziel vereint, die Resistenzbildung gegen die Artemisininderivate zu verringern.

Weitere Informationen

- Prof. Peter Seeberger, Max-Planck-Institut für Kolloid- und Grenzflächenforschung und Freie Universität Berlin, Telefon: 030 / 838-59300; E-Mail: Peter.seeberger@mpikg.mpg.de

- Dr. Kerry Gilmore, Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Telefon: 0176 / 85933125, E-Mail: Kerry.Gilmore@mpikg.mpg.de

- Prof. Andreas Seidel-Morgenstern, Max-Planck-Institut für Dynamik komplexer technischer Systeme, Sandtorstrasse 1, 39106 Magdeburg, Telefon: 0391-6110-401, E-Mail: seidel-morgenstern@mpi-magdeburg.mpg.de

Carsten Wette | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.fu-berlin.de
http://www.mpikg.mpg.de/5442066/Malaria-medications

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

nachricht Ultradünne CIGSE-Solarzellen: Nanostrukturen steigern den Wirkungsgrad
24.03.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Preiswerte Katalysatoren finden und verstehen: Auf das Eisen kommt es an

24.03.2017 | Biowissenschaften Chemie

Neue Hoffnung für Leberkrebspatienten

24.03.2017 | Medizintechnik

Innovationslabor für neue Wege in die digitale Zukunft

24.03.2017 | Förderungen Preise