Mainzer Wissenschaftler identifizieren Inhibitor der Myelinbildung im zentralen Nervensystem

Mainzer Wissenschaftler haben ein weiteres Molekül entdeckt, das eine wichtige Rolle bei der Regulierung der Bildung von Myelin im zentralen Nervensystem spielt. Myelin beschleunigt die Reizweiterleitung in Nervenzellen, indem es deren Fortsätze, die sog. Axone, an definierten Stellen umhüllt – vergleichbar mit der Plastikisolierung eines Stromkabels.

Ihre Ergebnisse haben die Wissenschaftler um Dr. Robin White vom Institut für Physiologie und Pathophysiologie der Universitätsmedizin Mainz kürzlich in der renommierten Fachzeitschrift EMBO reports veröffentlicht.

Damit Nervenzellen effizient Informationen über weite Distanzen übermitteln können, hat sich bei höheren Organismen die sprunghafte oder saltatorische Erregungsleitung entwickelt. Diese wird ermöglicht, indem die zur Reizweiterleitung spezialisierten axonalen Fortsätze der Nervenzellen in definierten Abständen von Myelin, einer Art Isolierschicht, umgeben sind. Im zentralen Nervensystem entsteht Myelin dadurch, dass Oligodendrozyten, ein bestimmter Typ von Gehirnzellen, ihre Zellfortsätze mehrfach um die Axone der Nervenzellen wickeln und einen kompakten Stapel von Zellmembranen, die sog. Myelinscheide, ausbilden. Diese enthält neben einem hohen Lipidanteil zwei Hauptproteine, deren Produktion genau reguliert werden muss.

Die aktuelle Studie beschäftigt sich mit der Synthese des Myelin Basischen Proteins (MBP), das zur Bildung und Stabilisierung der Myelinmembranen unverzichtbar ist. Wie alle Proteine wird auch MBP prinzipiell in zwei Stufen aus der zugrundeliegenden Erbinformation, der DNA, generiert: Zunächst wird die DNA in mRNA übersetzt, die wiederum als Matrize für die eigentliche Synthese des MBP-Proteins dient. Während der Myelinbildung wird in Oligodendrozyten diese Produktion des MBP-Proteins so lange unterdrückt, bis bestimmte Signale der Nervenzellen die Myelinisierung an spezifischen „Produktionsorten“ initiieren.

Bisher war weitgehend unbekannt, wie die Unterdrückung der MBP-Synthese über relativ lange Zeiträume erfolgt. Hier setzt die aktuelle Arbeit der Mainzer Wissenschaftler an, denn sie konnten ein Molekül identifizieren, das für die Inhibierung der MBP-Synthese verantwortlich ist. „Dieses Molekül mit der Bezeichnung sncRNA715 bindet an die MBP-mRNA und verhindert dadurch die MBP-Proteinsynthese“, erläutert Dr. Robin White. „Unsere Forschungsergebnisse zeigen, dass sich die Mengen von sncRNA715 und MBP während der Myelinbildung gegenläufig verhalten und dass sich in Oligodendrozyten das Ausmaß der MBP-Produktion durch experimentell veränderte Mengen an sncRNA175 beeinflussen lässt. Dies deutet darauf hin, dass das neu entdeckte Molekül ein wichtiger Regulationsfaktor der MBP-Synthese ist.“

Die Aufklärung der molekularen Grundlagen der Myelinbildung ist für verschiedene neurologische Erkrankungen von Bedeutung, bei denen es zu einem Verlust der schützenden Myelinschicht kommt. Zum Beispiel versteht man bislang nicht, warum ab einem bestimmten Zeitpunkt im Krankheitsverlauf der Multiplen Sklerose (MS) Schädigungen im Myelin nicht mehr von Oligodendrozyten repariert werden können. „Interessanterweise konnten wir in Zusammenarbeit mit niederländischen Kollegen auch im Hirngewebe von MS-Patienten eine Korrelation zwischen sncRNA715 und dem MBP-Protein feststellen“, so Robin White weiter.

„In Bereichen des Gehirns, die von der Krankheit betroffen waren, in denen die Myelinbildung also beeinträchtigt ist, fanden sich höhere Mengen an sncRNA715 als in solchen Bereichen, die nicht betroffen waren und in denen die Myelinstruktur scheinbar normal ist. Somit kann unsere Entdeckung helfen, einen molekularen Erklärungsansatz für die gestörte Myelinbildung bei Erkrankungen wie der Multiplen Sklerose zu liefern.“

Media Contact

Petra Giegerich idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer