Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnete aus dem 3D-Drucker

24.10.2016

Wie kann man einen Magneten bauen, der genau das gewünschte Magnetfeld hat? Die TU Wien hat eine Lösung: Erstmals können Magnete mit 3D-Drucker hergestellt werden.

Starke Magnete herzustellen ist heute technisch kein Problem. Schwierig ist es allerdings, einen Permanentmagneten zu produzieren, dessen Magnetfeld eine ganz bestimmte vorgegebene Gestalt annimmt.


Eine becherartige Form (rechts unten), hergestellt im 3D-Drucker

TU Wien

An der TU Wien wurde dafür nun eine neue Lösung gefunden: Erstmals kann man Permanentmagnete im 3D-Drucker herstellen. Das ermöglicht komplex geformte Magneten und präzise maßgeschneiderte Magnetfelder, wie man sie etwa für Magnetsensoren benötigt.

Entworfen am Computer

„Es kommt nicht immer nur auf die Stärke eines Magnetfeldes an“, sagt Dieter Süss, Leiter des Christian-Doppler Labors "Advanced Magnetic Sensing and Materials" an der TU Wien. „Oft benötigen wir spezielle Magnetfelder, deren Feldlinien auf ganz bestimmte Weise angeordnet sind – zum Beispiel ein Magnetfeld, das in einer Richtung ziemlich konstant ist, dessen Stärke sich aber entlang einer anderen Richtung stark verändert.“

Um solche Anforderungen zu erfüllen stellt man Magnete mit raffinierter geometrischer Form her. „Man kann einen Magneten am Computer entwerfen und seine Form anpassen, bis sein Magnetfeld alle gewünschten Anforderungen erfüllt“, erklärt Christian Huber, Doktoratsstudent im Team von Dieter Süss.

Doch wenn die gewünschte geometrische Form bekannt ist – wie lässt sich das Design dann umsetzen? Eine Möglichkeit ist das Spritzgussverfahren. Dafür muss man aber eigens eine Gussform herstellen, und das ist zeitaufwendig und teuer. Für die Produktion kleiner Stückzahlen lohnt sich das kaum.

Winzige Magnetpartikel in Kunststoff-Matrix

Nun gibt es dafür eine viel einfachere Methode: An der TU Wien entstand der erste 3D-Drucker, mit dem man Objekte aus magnetischen Materialien herstellen kann. 3D-Drucker, die Kunststoffstrukturen erzeugen, gibt es schon lange, und das Funktionsprinzip des Magnet-Druckers ist im Grunde dasselbe.

Allerdings arbeitet der Magnet-Drucker mit speziell hergestellten Schnüren aus magnetischem Mikro-Granulat, das von einem Kunststoff-Bindematerial zusammengehalten wird. Im Drucker wird das Material erhitzt und mit einer Düse Punkt für Punkt an den richtigen Stellen aufgebracht. So entsteht ein dreidimensionales Objekt, das zu ungefähr 90% aus magnetischem Material und zu 10% aus Kunststoff besteht.

Das Endprodukt ist zunächst noch nicht magnetisch, weil das Granulat in unmagnetisiertem Zustand eingebracht wird. Das fertige Objekt wird erst am Ende einem starken äußeren Magnetfeld ausgesetzt, dadurch wird es zum Permanentmagneten.

„Wir können auf diese Weise unterschiedliche magnetische Materialien verarbeiten, beispielsweise die besonders starken Neodym-Eisen-Bor Magnete“, sagt Dieter Süss. „Die Magnetdesigns, die wir am Computer berechnen, können wir damit rasch und präzise umsetzen – in einem Größenbereich von wenigen Zentimetern bis zu Dezimetern, mit einer Genauigkeit von weit unter einem Millimeter.“

Völlig neue Möglichkeiten

Das neue Verfahren ist nicht nur schnell und billig, es eröffnet nun auch Möglichkeiten, die mit anderen Techniken völlig undenkbar wären: So könnte man etwa in einem einzigen Magneten unterschiedliche Materialien verarbeiten und einen sanften Übergang zwischen starkem und schwachem Magnetismus erzeugen. „Nun werden wir ausloten, wie weit wir gehen können – aber bereits jetzt ist klar, dass der 3D-Druck Möglichkeiten im Magnet-Design bietet, von denen wir bisher nur träumen konnten“, meint Dieter Süss.

Rückfragehinweis:
Dr. Dieter Süss
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13746
dieter.suess@tuwien.ac.at

Weitere Informationen:

https://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2016/3dprintmagnet/ Bilderdownload
http://scitation.aip.org/content/aip/journal/apl/109/16/10.1063/1.4964856 Originalpublikation

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nesseltiere steuern Bakterien fern
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Die Immunabwehr gegen Pilzinfektionen ausrichten
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften