Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetbakterien - Zellulärer Kompass erfolgreich transplantiert

24.02.2014
Magnetbakterien orientieren sich mithilfe eines inneren Kompasses. Nun ist es gelungen, die für die Synthese dieses Organells zuständigen Gene komplett in einen anderen Organismus einzuschleusen – ein großer Fortschritt für die Biotechnologie.

Magnetbakterien nutzen das Magnetfeld der Erde, um im Schlamm von Gewässern oben und unten zu unterscheiden und für sie optimale Lebensbereiche aufzusuchen. Dabei helfen ihnen einzigartige Organellen, die Magnetosomen. Magnetosomen bestehen aus winzigen Magnetitkristallen, die von einer biologischen Membran umhüllt sind. Diese sind in regelmäßigen Ketten angeordnet und bilden einen zellulären Mini-Kompass, der dafür sorgt, dass die ganze Bakterienzelle wie eine Kompassnadel im Erdmagnetfeld ausgerichtet wird. 


Das Magnetosom ist eine der kompliziertesten Strukturen, die aus Bakterienzellen bekannt sind. Seine Synthese erfordert viele verschiedene Schritte, die genetisch gesteuert werden. „Wir konnten in den letzten Jahren nachweisen, dass mindestens 30 spezielle Gene beteiligt sind, die in einem bestimmten Abschnitt des Genoms geclustert sind“, sagt der LMU-Mikrobiologe Dirk Schüler, der mit seiner Arbeitsgruppe seit mehr als 15 Jahren Magnetbakterien erforscht. „Bisher war aber unklar, ob noch weitere, bisher unbekannte Genfunktionen für die Bildung des Magnetosoms erforderlich sind“.


Biotechnologisch interessant, aber schwer kultivierbar


Diese Frage ist auch für die Biotechnologie hoch interessant, weil Magnetosomen magnetische Nanopartikel darstellen, die mit ähnlich perfekten Eigenschaften bisher nicht für technische oder biomedizinische Anwendungen – etwa in der biomedizinischen Bildgebung – chemisch synthetisiert werden können. Die weitere Erforschung der biologischen Produktion der Magnetosomen stand allerdings bisher vor der Schwierigkeit, dass natürlich vorkommende Magnetbakterien entweder gar nicht oder nur unter großen Schwierigkeiten im Labor gezüchtet werden können.


Daher war es schon lange ein Traum vieler Wissenschaftler, die relevanten Gene komplett in andere, bessere kultivierbare Organismen zu übertragen. „Allerdings ist das methodisch ziemlich schwierig, weil die Zahl der zu übertragenden Gene ungewöhnlich groß ist“, erklärt Isabel Kolinko, die Erstautorin der Studie. Damit das Magnetosom gebildet werden kann, müssen zudem zahlreiche zelluläre Biosynthese-Schritte in der richtigen räumlichen und zeitlichen Reihenfolge ablaufen. Das erfordert eine genaue Steuerung. Außerdem war unklar, ob noch weitere, bisher unbekannte Genfunktionen erforderlich sind. Deswegen war es ungewiss, ob dieses Ziel je erreicht werden kann. Nun gelang den Wissenschaftlern der Durchbruch: Gemeinsam mit Kollegen vom Helmholtz-Institut für Pharmazeutische Forschung in Saarbrücken schleuste Schülers Team alle bekannten Magnetosomengene aus dem Magnetbakterium Magnetospirillum gryphiswaldense in das Photosynthese betreibende Bakterium Rhodospirillum rubrum ein.


Nanomagnete aus dem Bioreaktor


„Nach der Übertragung bildete R.rubrum Ketten magnetischer Kristalle, die denjenigen von M.gryphiswaldense entsprechen und sich wie bei diesem im Erdmagnetfeld ausrichten – damit haben wir erstmals demonstriert, dass die Transplantation eines so komplexen Biosynthesewegs in einen anderen Organismus möglich ist“, betont Schüler. Zudem beweist dieser Erfolg, dass die bisher bekannten 30 Gene für die Bildung von Magnetosomen ausreichen.


R.rubrum wählten die Wissenschaftler als Wirtsorganismus, weil sich dieses Bakterium im Vergleich zu den empfindlichen Magnetbakterien besser züchten lässt. Der neu entstandene Stamm ist mit seinen magnetischen Eigenschaften bereits jetzt biotechnologisch hoch interessant, da er voraussichtlich die Produktion von Magnetnanopartikeln erleichtert: Er ist schnellwüchsiger als M.gryphiswaldense und liefert größere Ausbeuten. Damit wird eine billigere Herstellung der Nanopartikel möglich.


„Noch bedeutsamer ist, dass es damit für die Zukunft sogar möglich erscheint, durch die gezielte Manipulation mit Methoden der synthetischen Biologie die Eigenschaften der biogenen Nano-Magnete noch zu verbessern, beziehungsweise Nanomagnete mit ganz neuen Eigenschaften herzustellen, etwa in Bezug auf deren Form, Größe, Zahl und magnetische Eigenschaften“, erklärt Schüler. Falls es gelingt, die erforderlichen Gene weiter einzugrenzen und anzupassen, könnten diese möglicherweise auch in Zellen höherer Organismen eingeschleust werden – und diese so magnetisieren. „Dies hätte vor allem für die wissenschaftliche Grundlagenforschung enormes Anwendungspotential, z.B. bei der experimentellen Manipulation von zellulären Prozessen und als zellulärer „Reporter“ für die Untersuchung mit bildgebenden Verfahren“, sagt Schüler.
(Nature Nanotechnology 2014) göd


Publikation:
Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters
Isabel Kolinko, Anna Lohße, Sarah Borg, Oliver Raschdorf, Christian Jogler, Qiang Tu, Mihály Pósfai, Éva Tompa, Jürgen M. Plitzko, Andreas Brachmann, Gerhard Wanner, Rolf Müller, Youming Zhang & Dirk Schüler
Nature Nanotechnology 2014


Kontakt:
Prof. Dr. Dirk Schüler
Fakultät für Biologie
Tel: +49 (0)89 / 2180-74502
Fax: +49 (0)89 / 2180-74515
dirk.schueler@lmu.de

Luise Dirscherl | idw

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Feinste organische Partikel in der Atmosphäre sind häufiger glasartig als flüssige Öltröpfchen
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Darmflora beeinflusst das Altern
21.04.2017 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: Neu entdeckter Exoplanet könnte bester Kandidat für die Suche nach Leben sein

Supererde in bewohnbarer Zone um aktivitätsschwachen roten Zwergstern gefunden

Ein Exoplanet, der 40 Lichtjahre von der Erde entfernt einen roten Zwergstern umkreist, könnte in naher Zukunft der beste Ort sein, um außerhalb des...

Im Focus: Resistiver Schaltmechanismus aufgeklärt

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft.

Wie ReRAM-Zellen genau funktionieren, ist jedoch bisher nicht vollständig verstanden. Insbesondere die Details der ablaufenden chemischen Reaktionen geben den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

Licht - ein Werkzeug für die Laborbranche

20.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligenter Werkstattwagen unterstützt Mensch in der Produktion

21.04.2017 | HANNOVER MESSE

Forschungszentrum Jülich auf der Hannover Messe 2017

21.04.2017 | HANNOVER MESSE

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungsnachrichten