Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetbakterien - Zellulärer Kompass erfolgreich transplantiert

24.02.2014
Magnetbakterien orientieren sich mithilfe eines inneren Kompasses. Nun ist es gelungen, die für die Synthese dieses Organells zuständigen Gene komplett in einen anderen Organismus einzuschleusen – ein großer Fortschritt für die Biotechnologie.

Magnetbakterien nutzen das Magnetfeld der Erde, um im Schlamm von Gewässern oben und unten zu unterscheiden und für sie optimale Lebensbereiche aufzusuchen. Dabei helfen ihnen einzigartige Organellen, die Magnetosomen. Magnetosomen bestehen aus winzigen Magnetitkristallen, die von einer biologischen Membran umhüllt sind. Diese sind in regelmäßigen Ketten angeordnet und bilden einen zellulären Mini-Kompass, der dafür sorgt, dass die ganze Bakterienzelle wie eine Kompassnadel im Erdmagnetfeld ausgerichtet wird. 


Das Magnetosom ist eine der kompliziertesten Strukturen, die aus Bakterienzellen bekannt sind. Seine Synthese erfordert viele verschiedene Schritte, die genetisch gesteuert werden. „Wir konnten in den letzten Jahren nachweisen, dass mindestens 30 spezielle Gene beteiligt sind, die in einem bestimmten Abschnitt des Genoms geclustert sind“, sagt der LMU-Mikrobiologe Dirk Schüler, der mit seiner Arbeitsgruppe seit mehr als 15 Jahren Magnetbakterien erforscht. „Bisher war aber unklar, ob noch weitere, bisher unbekannte Genfunktionen für die Bildung des Magnetosoms erforderlich sind“.


Biotechnologisch interessant, aber schwer kultivierbar


Diese Frage ist auch für die Biotechnologie hoch interessant, weil Magnetosomen magnetische Nanopartikel darstellen, die mit ähnlich perfekten Eigenschaften bisher nicht für technische oder biomedizinische Anwendungen – etwa in der biomedizinischen Bildgebung – chemisch synthetisiert werden können. Die weitere Erforschung der biologischen Produktion der Magnetosomen stand allerdings bisher vor der Schwierigkeit, dass natürlich vorkommende Magnetbakterien entweder gar nicht oder nur unter großen Schwierigkeiten im Labor gezüchtet werden können.


Daher war es schon lange ein Traum vieler Wissenschaftler, die relevanten Gene komplett in andere, bessere kultivierbare Organismen zu übertragen. „Allerdings ist das methodisch ziemlich schwierig, weil die Zahl der zu übertragenden Gene ungewöhnlich groß ist“, erklärt Isabel Kolinko, die Erstautorin der Studie. Damit das Magnetosom gebildet werden kann, müssen zudem zahlreiche zelluläre Biosynthese-Schritte in der richtigen räumlichen und zeitlichen Reihenfolge ablaufen. Das erfordert eine genaue Steuerung. Außerdem war unklar, ob noch weitere, bisher unbekannte Genfunktionen erforderlich sind. Deswegen war es ungewiss, ob dieses Ziel je erreicht werden kann. Nun gelang den Wissenschaftlern der Durchbruch: Gemeinsam mit Kollegen vom Helmholtz-Institut für Pharmazeutische Forschung in Saarbrücken schleuste Schülers Team alle bekannten Magnetosomengene aus dem Magnetbakterium Magnetospirillum gryphiswaldense in das Photosynthese betreibende Bakterium Rhodospirillum rubrum ein.


Nanomagnete aus dem Bioreaktor


„Nach der Übertragung bildete R.rubrum Ketten magnetischer Kristalle, die denjenigen von M.gryphiswaldense entsprechen und sich wie bei diesem im Erdmagnetfeld ausrichten – damit haben wir erstmals demonstriert, dass die Transplantation eines so komplexen Biosynthesewegs in einen anderen Organismus möglich ist“, betont Schüler. Zudem beweist dieser Erfolg, dass die bisher bekannten 30 Gene für die Bildung von Magnetosomen ausreichen.


R.rubrum wählten die Wissenschaftler als Wirtsorganismus, weil sich dieses Bakterium im Vergleich zu den empfindlichen Magnetbakterien besser züchten lässt. Der neu entstandene Stamm ist mit seinen magnetischen Eigenschaften bereits jetzt biotechnologisch hoch interessant, da er voraussichtlich die Produktion von Magnetnanopartikeln erleichtert: Er ist schnellwüchsiger als M.gryphiswaldense und liefert größere Ausbeuten. Damit wird eine billigere Herstellung der Nanopartikel möglich.


„Noch bedeutsamer ist, dass es damit für die Zukunft sogar möglich erscheint, durch die gezielte Manipulation mit Methoden der synthetischen Biologie die Eigenschaften der biogenen Nano-Magnete noch zu verbessern, beziehungsweise Nanomagnete mit ganz neuen Eigenschaften herzustellen, etwa in Bezug auf deren Form, Größe, Zahl und magnetische Eigenschaften“, erklärt Schüler. Falls es gelingt, die erforderlichen Gene weiter einzugrenzen und anzupassen, könnten diese möglicherweise auch in Zellen höherer Organismen eingeschleust werden – und diese so magnetisieren. „Dies hätte vor allem für die wissenschaftliche Grundlagenforschung enormes Anwendungspotential, z.B. bei der experimentellen Manipulation von zellulären Prozessen und als zellulärer „Reporter“ für die Untersuchung mit bildgebenden Verfahren“, sagt Schüler.
(Nature Nanotechnology 2014) göd


Publikation:
Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters
Isabel Kolinko, Anna Lohße, Sarah Borg, Oliver Raschdorf, Christian Jogler, Qiang Tu, Mihály Pósfai, Éva Tompa, Jürgen M. Plitzko, Andreas Brachmann, Gerhard Wanner, Rolf Müller, Youming Zhang & Dirk Schüler
Nature Nanotechnology 2014


Kontakt:
Prof. Dr. Dirk Schüler
Fakultät für Biologie
Tel: +49 (0)89 / 2180-74502
Fax: +49 (0)89 / 2180-74515
dirk.schueler@lmu.de

Luise Dirscherl | idw

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Geckos kommunizieren überraschend flexibel
29.05.2017 | Max-Planck-Institut für Ornithologie

nachricht Bauchspeicheldrüsenkrebs: Forschungsgruppe erprobt erfolgreich neue Diagnose- und Therapieansätze
29.05.2017 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode für die Datenübertragung mit Licht

Der steigende Bedarf an schneller, leistungsfähiger Datenübertragung erfordert die Entwicklung neuer Verfahren zur verlustarmen und störungsfreien Übermittlung von optischen Informationssignalen. Wissenschaftler der Universität Johannesburg, des Instituts für Angewandte Optik der Friedrich-Schiller-Universität Jena und des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) präsentieren im Fachblatt „Journal of Optics“ eine neue Möglichkeit, glasfaserbasierte und kabellose optische Datenübertragung effizient miteinander zu verbinden.

Dank des Internets können wir in Sekundenbruchteilen mit Menschen rund um den Globus in Kontakt treten. Damit die Kommunikation reibungslos funktioniert,...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebensdauer alternder Brücken - prüfen und vorausschauen

29.05.2017 | Veranstaltungen

49. eucen-Konferenz zum Thema Lebenslanges Lernen an Universitäten

29.05.2017 | Veranstaltungen

Internationale Konferenz an der Schnittstelle von Literatur, Kultur und Wirtschaft

29.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligente Sensoren mit System

29.05.2017 | Messenachrichten

Geckos kommunizieren überraschend flexibel

29.05.2017 | Biowissenschaften Chemie

1,5 Millionen Euro für vier neue „Innovative Training Networks” an der Universität Hamburg

29.05.2017 | Förderungen Preise