Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magdeburger Immunologen lüften ein lange gehütetes Geheimnis der Immunzellaktivierung

22.02.2013
Das Immunsystem spielt eine essentielle Rolle bei der Abwehr von Mikroorganismen, wie Bakterien, Pilze, Viren und Protozoen.

Um seine Aufgaben zu erfüllen, ist das Immunsystem mit speziellen Abwehrzellen ausgerüstet, unter denen die so genannten T-Zellen eine zentrale Rolle spielen. Ohne T-Lymphozyten ist der Mensch Angriffen durch Mikroben, insbesondere durch Viren und Pilze, schutzlos ausgeliefert.


Zeit- und ortsaufgelöste Visualisierung der Konformationsänderung des Biosensors in lebenden T-Zellen, nachdem der T-Zellrezeptor eine krankmachende Substanz (hier: Protein-A von Staphylococcus aureus) erkannt hat (Größenbalken: 10 Mikrometer)
Aufnahme: Institut

Die T-Lymphozyten tragen auf ihrer Oberfläche eine Erkennungsstruktur, den so genannten T-Zellrezeptor, der die T-Zellen dazu in die Lage versetzt, eindringende Krankheitserreger, bzw. deren Bruchstücke, zu erkennen und dann eine zielgerichtete Abwehrreaktion einzuleiten. Nach Erkennung von krankmachenden Agenzien durch den T-Zellrezeptor werden die T-Zellen aktiviert und beginnen dann, ihre Aufgaben im Immunsystem zu erfüllen.

Es ist seit langem bekannt, dass unmittelbar nach der Erkennung von Krankheitserregern durch den T-Zellrezeptor im Inneren der T-Zelle Signalkaskaden angeschaltet werden, die die Aktivierungsprozesse steuern. Beim Anschalten dieser Signalkaskaden spielen Phosphorylierungsreaktionen eine wichtige Rolle. So kommt es unmittelbar nach Erkennung von fremden Substanzen durch den T-Zellrezeptor zu einer Phosphorylierung eines zentralen Schalters innerhalb der T-Zelle, der so genannten zeta-Kette.

Diese Phosphorylierung ist die „Initialzündung“, die alle nachgeschalteten Signalwege in den T-Zellen steuert. Der Verlust der initialen Phosphorylierung der zeta-Kette führt dazu, dass T-Zellen nicht aktiviert werden können, was sich in einem Ausfall der T-Zell vermittelten Immunantwort widerspiegelt.

Seit mehr als 20 Jahren versuchen Immunologen weltweit herauszufinden, wie die initiale Phosphorylierungsreaktion der zeta-Kette im Inneren der T-Zelle gesteuert wird. Es ist seit langem bekannt, dass hierfür die Tyrosinkinase Lck verantwortlich ist. Trotz intensivster Forschung ist es jedoch bis heute nicht gelungen, zu klären, wie Lck den ersten Schritt der Signalverarbeitung reguliert. Einige Autoren gehen davon aus, dass die Lck-Moleküle immer gleich aktiv sind und in der Zelle einfach hin und hergeschoben werden, und so den Zugang zu der zeta-Kette erhalten. Eine alternative Hypothese besagt, dass Lck nach Erkennung von Krankheitserregern einer Veränderung seiner Struktur unterworfen wird, die in der Folge dazu führt, dass das Molekül aktiviert wird (um dann die Phosphorylierungsreaktion der zeta-Kette einzuleiten).

Mittels einer neuen mikroskopischen Technik ist es Magdeburger Immunologen in Zusammenarbeit mit Physikern und Biologen des Leibniz-Institutes für Neurobiologie nun gelungen, ein Verfahren zu entwickeln, mit dem die verschiedenen strukturellen Zustände von Lck in lebenden Zellen detektiert und so nicht-aktive Lck-Moleküle (geschlossene Form) von aktiven Lck-Molekülen (offene Form) „online“ mittels besonderer mikroskopischer Verfahren unterschieden werden können.

Um die verschiedenen Zustände von Lck in T-Zellen zu detektieren, benutzen die Wissenschaftler einen so genannten Lck-Biosensor, der wie folgt funktioniert: Mittels gentechnischer Methoden wurden zwei Fluoreszenzfarbstoffe in das Lck-Molekül eingebaut. Die Farbstoffe wurden so platziert, dass sie sehr nahe zueinander lokalisieren, wenn Lck in der inaktiven, also geschlossenen, Form vorliegt. Dies führt dann dazu, dass zwischen den beiden Farbstoffen Licht- bzw. Energieimpulse ausgetauscht werden, ein Prozess der als FRET (Fluorescence Resonance Energy Transfer) bezeichnet wird. Mittels hochauflösender und sehr sensitiver Mikroskope sowie geeigneter mathematischer Methoden lässt sich das FRET-Signal nicht nur eindeutig nachweisen, sondern es kann in der Zelle lokalisiert werden und seine Größe/Stärke exakt bestimmt werden. Wird Lck aktiviert, so klappt das Molekül auf, was zur Folge hat, dass die beiden Fluoreszenzfarbstoffe weit voneinander entfernt sind, so dass kein Austausch von Energie möglich ist. Dies führt zu einem Verlust des FRET Signals.

Die Magdeburger Immunologen haben nun den Biosensor in T-Zellen eingebracht und dann untersucht, ob sich die Struktur von Lck nach T-Zellaktivierung verändert. In der renommierten Fachzeitschrift Science Signaling zeigen die Autoren, dass etwa 20 Prozent der zellulären Lck-Moleküle nach Erkennung von Krankheitserregern durch den T-Zellrezeptor „aufklappen“. Weiterhin konnten die Autoren zeigen, dass das „Aufklappen“ von Lck tatsächlich mit einer Erhöhung der enzymatischen Aktivität des Enzyms einhergeht und mit der Phosphorylierung der zeta-Kette in der T-Zelle korreliert. Somit konnte durch den Zugang erstmals gezeigt werden, dass Lck im Rahmen der T-Zellaktivierung de novo aktiviert wird.

Mit ihrer Arbeit haben die Immunologen maßgebliche Erkenntnisse in Bezug auf die ersten Schritte der T-Zellaktivierung geliefert. Diese Erkenntnisse sind insofern von Bedeutung, als Pharmafirmen seit vielen Jahren versuchen, Inhibitoren gegen das Lck-Molekül herzustellen, die im klinischen Alltag, z.B. bei der Behandlung von Autoimmunerkrankungen oder auch malignen Erkrankungen eingesetzt werden könnten.

„Wir sind sehr stolz, dass es uns gelungen ist, mittels einer hochsensitiven mikroskopischen Technik, die nur an wenigen Laboratorien weltweit zur Verfügung steht, erstmals zu demonstrieren, dass Lck im Rahmen der T-Zellaktivierung einer deutlichen de novo Aktivierung unterworfen wird“, so der verantwortliche Autor der Veröffentlichung, Prof. Dr. Burkhart Schraven, Direktor des Instituts für Molekulare und klinische Immunologie an der Medizinischen Fakultät der Otto-von-Guericke-Universität Magdeburg (OVGU) und Leiter der Abteilung Immunkontrolle am Helmholtz-Zentrum für Infektionsforschung in Braunschweig. „Mit unserer Arbeit haben wir einen wichtigen Beitrag zu dem seit vielen Jahren währenden wissenschaftlichen Disput um das Lck-Molekül und dessen Biologie geleistet und denken, dass wir eine zentrale Frage der T-Zellimmunologie klären konnten“. Weiter: „Das Besondere an unserer Technik besteht darin, dass mittels ähnlicher Biosensoren nicht nur das Immunsystem untersucht werden kann bzw. Aktivierungsprozesse im Immunsystem, sondern dass es generell möglich ist, die Aktivität ähnlich aufgebauter Moleküle im gesamten Körper zum Beispiel auch im Zentralnervensystem, in der Niere, in der Lunge oder in anderen Organen im Detail zu untersuchen. Wir sind gespannt auf die Resonanz die unser Artikel hervorruft“.

Originalveröffentlichung:
T Cell Activation Results in Conformational Changes in the Src Family Kinase Lck to Induce Its Activation
[DOI: 10.1126/scisignal.2003607]
http://stke.sciencemag.org/cgi/content/abstract/6/263/ra13
Kontakt:
Professor Dr. med. Burkhart Schraven
Institut für Molekulare und Klinische Immunologie
Otto-von-Guericke-Universität Magdeburg
Email: burkhart.schraven@med.ovgu.de
Tel: + 49-(0)391-67-15800
WEB: http://www.med.uni-magdeburg.de/fme/institute/iim/

Kornelia Suske | idw
Weitere Informationen:
http://www.med.uni-magdeburg.de/fme/institute/iim/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher sehen Biomolekülen bei der Arbeit zu
05.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Wie sich Zellen gegen Salmonellen verteidigen
05.12.2016 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten