Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magdeburger Immunologen lüften ein lange gehütetes Geheimnis der Immunzellaktivierung

22.02.2013
Das Immunsystem spielt eine essentielle Rolle bei der Abwehr von Mikroorganismen, wie Bakterien, Pilze, Viren und Protozoen.

Um seine Aufgaben zu erfüllen, ist das Immunsystem mit speziellen Abwehrzellen ausgerüstet, unter denen die so genannten T-Zellen eine zentrale Rolle spielen. Ohne T-Lymphozyten ist der Mensch Angriffen durch Mikroben, insbesondere durch Viren und Pilze, schutzlos ausgeliefert.


Zeit- und ortsaufgelöste Visualisierung der Konformationsänderung des Biosensors in lebenden T-Zellen, nachdem der T-Zellrezeptor eine krankmachende Substanz (hier: Protein-A von Staphylococcus aureus) erkannt hat (Größenbalken: 10 Mikrometer)
Aufnahme: Institut

Die T-Lymphozyten tragen auf ihrer Oberfläche eine Erkennungsstruktur, den so genannten T-Zellrezeptor, der die T-Zellen dazu in die Lage versetzt, eindringende Krankheitserreger, bzw. deren Bruchstücke, zu erkennen und dann eine zielgerichtete Abwehrreaktion einzuleiten. Nach Erkennung von krankmachenden Agenzien durch den T-Zellrezeptor werden die T-Zellen aktiviert und beginnen dann, ihre Aufgaben im Immunsystem zu erfüllen.

Es ist seit langem bekannt, dass unmittelbar nach der Erkennung von Krankheitserregern durch den T-Zellrezeptor im Inneren der T-Zelle Signalkaskaden angeschaltet werden, die die Aktivierungsprozesse steuern. Beim Anschalten dieser Signalkaskaden spielen Phosphorylierungsreaktionen eine wichtige Rolle. So kommt es unmittelbar nach Erkennung von fremden Substanzen durch den T-Zellrezeptor zu einer Phosphorylierung eines zentralen Schalters innerhalb der T-Zelle, der so genannten zeta-Kette.

Diese Phosphorylierung ist die „Initialzündung“, die alle nachgeschalteten Signalwege in den T-Zellen steuert. Der Verlust der initialen Phosphorylierung der zeta-Kette führt dazu, dass T-Zellen nicht aktiviert werden können, was sich in einem Ausfall der T-Zell vermittelten Immunantwort widerspiegelt.

Seit mehr als 20 Jahren versuchen Immunologen weltweit herauszufinden, wie die initiale Phosphorylierungsreaktion der zeta-Kette im Inneren der T-Zelle gesteuert wird. Es ist seit langem bekannt, dass hierfür die Tyrosinkinase Lck verantwortlich ist. Trotz intensivster Forschung ist es jedoch bis heute nicht gelungen, zu klären, wie Lck den ersten Schritt der Signalverarbeitung reguliert. Einige Autoren gehen davon aus, dass die Lck-Moleküle immer gleich aktiv sind und in der Zelle einfach hin und hergeschoben werden, und so den Zugang zu der zeta-Kette erhalten. Eine alternative Hypothese besagt, dass Lck nach Erkennung von Krankheitserregern einer Veränderung seiner Struktur unterworfen wird, die in der Folge dazu führt, dass das Molekül aktiviert wird (um dann die Phosphorylierungsreaktion der zeta-Kette einzuleiten).

Mittels einer neuen mikroskopischen Technik ist es Magdeburger Immunologen in Zusammenarbeit mit Physikern und Biologen des Leibniz-Institutes für Neurobiologie nun gelungen, ein Verfahren zu entwickeln, mit dem die verschiedenen strukturellen Zustände von Lck in lebenden Zellen detektiert und so nicht-aktive Lck-Moleküle (geschlossene Form) von aktiven Lck-Molekülen (offene Form) „online“ mittels besonderer mikroskopischer Verfahren unterschieden werden können.

Um die verschiedenen Zustände von Lck in T-Zellen zu detektieren, benutzen die Wissenschaftler einen so genannten Lck-Biosensor, der wie folgt funktioniert: Mittels gentechnischer Methoden wurden zwei Fluoreszenzfarbstoffe in das Lck-Molekül eingebaut. Die Farbstoffe wurden so platziert, dass sie sehr nahe zueinander lokalisieren, wenn Lck in der inaktiven, also geschlossenen, Form vorliegt. Dies führt dann dazu, dass zwischen den beiden Farbstoffen Licht- bzw. Energieimpulse ausgetauscht werden, ein Prozess der als FRET (Fluorescence Resonance Energy Transfer) bezeichnet wird. Mittels hochauflösender und sehr sensitiver Mikroskope sowie geeigneter mathematischer Methoden lässt sich das FRET-Signal nicht nur eindeutig nachweisen, sondern es kann in der Zelle lokalisiert werden und seine Größe/Stärke exakt bestimmt werden. Wird Lck aktiviert, so klappt das Molekül auf, was zur Folge hat, dass die beiden Fluoreszenzfarbstoffe weit voneinander entfernt sind, so dass kein Austausch von Energie möglich ist. Dies führt zu einem Verlust des FRET Signals.

Die Magdeburger Immunologen haben nun den Biosensor in T-Zellen eingebracht und dann untersucht, ob sich die Struktur von Lck nach T-Zellaktivierung verändert. In der renommierten Fachzeitschrift Science Signaling zeigen die Autoren, dass etwa 20 Prozent der zellulären Lck-Moleküle nach Erkennung von Krankheitserregern durch den T-Zellrezeptor „aufklappen“. Weiterhin konnten die Autoren zeigen, dass das „Aufklappen“ von Lck tatsächlich mit einer Erhöhung der enzymatischen Aktivität des Enzyms einhergeht und mit der Phosphorylierung der zeta-Kette in der T-Zelle korreliert. Somit konnte durch den Zugang erstmals gezeigt werden, dass Lck im Rahmen der T-Zellaktivierung de novo aktiviert wird.

Mit ihrer Arbeit haben die Immunologen maßgebliche Erkenntnisse in Bezug auf die ersten Schritte der T-Zellaktivierung geliefert. Diese Erkenntnisse sind insofern von Bedeutung, als Pharmafirmen seit vielen Jahren versuchen, Inhibitoren gegen das Lck-Molekül herzustellen, die im klinischen Alltag, z.B. bei der Behandlung von Autoimmunerkrankungen oder auch malignen Erkrankungen eingesetzt werden könnten.

„Wir sind sehr stolz, dass es uns gelungen ist, mittels einer hochsensitiven mikroskopischen Technik, die nur an wenigen Laboratorien weltweit zur Verfügung steht, erstmals zu demonstrieren, dass Lck im Rahmen der T-Zellaktivierung einer deutlichen de novo Aktivierung unterworfen wird“, so der verantwortliche Autor der Veröffentlichung, Prof. Dr. Burkhart Schraven, Direktor des Instituts für Molekulare und klinische Immunologie an der Medizinischen Fakultät der Otto-von-Guericke-Universität Magdeburg (OVGU) und Leiter der Abteilung Immunkontrolle am Helmholtz-Zentrum für Infektionsforschung in Braunschweig. „Mit unserer Arbeit haben wir einen wichtigen Beitrag zu dem seit vielen Jahren währenden wissenschaftlichen Disput um das Lck-Molekül und dessen Biologie geleistet und denken, dass wir eine zentrale Frage der T-Zellimmunologie klären konnten“. Weiter: „Das Besondere an unserer Technik besteht darin, dass mittels ähnlicher Biosensoren nicht nur das Immunsystem untersucht werden kann bzw. Aktivierungsprozesse im Immunsystem, sondern dass es generell möglich ist, die Aktivität ähnlich aufgebauter Moleküle im gesamten Körper zum Beispiel auch im Zentralnervensystem, in der Niere, in der Lunge oder in anderen Organen im Detail zu untersuchen. Wir sind gespannt auf die Resonanz die unser Artikel hervorruft“.

Originalveröffentlichung:
T Cell Activation Results in Conformational Changes in the Src Family Kinase Lck to Induce Its Activation
[DOI: 10.1126/scisignal.2003607]
http://stke.sciencemag.org/cgi/content/abstract/6/263/ra13
Kontakt:
Professor Dr. med. Burkhart Schraven
Institut für Molekulare und Klinische Immunologie
Otto-von-Guericke-Universität Magdeburg
Email: burkhart.schraven@med.ovgu.de
Tel: + 49-(0)391-67-15800
WEB: http://www.med.uni-magdeburg.de/fme/institute/iim/

Kornelia Suske | idw
Weitere Informationen:
http://www.med.uni-magdeburg.de/fme/institute/iim/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen
12.12.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Undercover im Kampf gegen Tuberkulose
12.12.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit Quantenmechanik zu neuen Solarzellen: Forschungspreis für Bayreuther Physikerin

12.12.2017 | Förderungen Preise

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik