Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magdeburger Immunologen lüften ein lange gehütetes Geheimnis der Immunzellaktivierung

22.02.2013
Das Immunsystem spielt eine essentielle Rolle bei der Abwehr von Mikroorganismen, wie Bakterien, Pilze, Viren und Protozoen.

Um seine Aufgaben zu erfüllen, ist das Immunsystem mit speziellen Abwehrzellen ausgerüstet, unter denen die so genannten T-Zellen eine zentrale Rolle spielen. Ohne T-Lymphozyten ist der Mensch Angriffen durch Mikroben, insbesondere durch Viren und Pilze, schutzlos ausgeliefert.


Zeit- und ortsaufgelöste Visualisierung der Konformationsänderung des Biosensors in lebenden T-Zellen, nachdem der T-Zellrezeptor eine krankmachende Substanz (hier: Protein-A von Staphylococcus aureus) erkannt hat (Größenbalken: 10 Mikrometer)
Aufnahme: Institut

Die T-Lymphozyten tragen auf ihrer Oberfläche eine Erkennungsstruktur, den so genannten T-Zellrezeptor, der die T-Zellen dazu in die Lage versetzt, eindringende Krankheitserreger, bzw. deren Bruchstücke, zu erkennen und dann eine zielgerichtete Abwehrreaktion einzuleiten. Nach Erkennung von krankmachenden Agenzien durch den T-Zellrezeptor werden die T-Zellen aktiviert und beginnen dann, ihre Aufgaben im Immunsystem zu erfüllen.

Es ist seit langem bekannt, dass unmittelbar nach der Erkennung von Krankheitserregern durch den T-Zellrezeptor im Inneren der T-Zelle Signalkaskaden angeschaltet werden, die die Aktivierungsprozesse steuern. Beim Anschalten dieser Signalkaskaden spielen Phosphorylierungsreaktionen eine wichtige Rolle. So kommt es unmittelbar nach Erkennung von fremden Substanzen durch den T-Zellrezeptor zu einer Phosphorylierung eines zentralen Schalters innerhalb der T-Zelle, der so genannten zeta-Kette.

Diese Phosphorylierung ist die „Initialzündung“, die alle nachgeschalteten Signalwege in den T-Zellen steuert. Der Verlust der initialen Phosphorylierung der zeta-Kette führt dazu, dass T-Zellen nicht aktiviert werden können, was sich in einem Ausfall der T-Zell vermittelten Immunantwort widerspiegelt.

Seit mehr als 20 Jahren versuchen Immunologen weltweit herauszufinden, wie die initiale Phosphorylierungsreaktion der zeta-Kette im Inneren der T-Zelle gesteuert wird. Es ist seit langem bekannt, dass hierfür die Tyrosinkinase Lck verantwortlich ist. Trotz intensivster Forschung ist es jedoch bis heute nicht gelungen, zu klären, wie Lck den ersten Schritt der Signalverarbeitung reguliert. Einige Autoren gehen davon aus, dass die Lck-Moleküle immer gleich aktiv sind und in der Zelle einfach hin und hergeschoben werden, und so den Zugang zu der zeta-Kette erhalten. Eine alternative Hypothese besagt, dass Lck nach Erkennung von Krankheitserregern einer Veränderung seiner Struktur unterworfen wird, die in der Folge dazu führt, dass das Molekül aktiviert wird (um dann die Phosphorylierungsreaktion der zeta-Kette einzuleiten).

Mittels einer neuen mikroskopischen Technik ist es Magdeburger Immunologen in Zusammenarbeit mit Physikern und Biologen des Leibniz-Institutes für Neurobiologie nun gelungen, ein Verfahren zu entwickeln, mit dem die verschiedenen strukturellen Zustände von Lck in lebenden Zellen detektiert und so nicht-aktive Lck-Moleküle (geschlossene Form) von aktiven Lck-Molekülen (offene Form) „online“ mittels besonderer mikroskopischer Verfahren unterschieden werden können.

Um die verschiedenen Zustände von Lck in T-Zellen zu detektieren, benutzen die Wissenschaftler einen so genannten Lck-Biosensor, der wie folgt funktioniert: Mittels gentechnischer Methoden wurden zwei Fluoreszenzfarbstoffe in das Lck-Molekül eingebaut. Die Farbstoffe wurden so platziert, dass sie sehr nahe zueinander lokalisieren, wenn Lck in der inaktiven, also geschlossenen, Form vorliegt. Dies führt dann dazu, dass zwischen den beiden Farbstoffen Licht- bzw. Energieimpulse ausgetauscht werden, ein Prozess der als FRET (Fluorescence Resonance Energy Transfer) bezeichnet wird. Mittels hochauflösender und sehr sensitiver Mikroskope sowie geeigneter mathematischer Methoden lässt sich das FRET-Signal nicht nur eindeutig nachweisen, sondern es kann in der Zelle lokalisiert werden und seine Größe/Stärke exakt bestimmt werden. Wird Lck aktiviert, so klappt das Molekül auf, was zur Folge hat, dass die beiden Fluoreszenzfarbstoffe weit voneinander entfernt sind, so dass kein Austausch von Energie möglich ist. Dies führt zu einem Verlust des FRET Signals.

Die Magdeburger Immunologen haben nun den Biosensor in T-Zellen eingebracht und dann untersucht, ob sich die Struktur von Lck nach T-Zellaktivierung verändert. In der renommierten Fachzeitschrift Science Signaling zeigen die Autoren, dass etwa 20 Prozent der zellulären Lck-Moleküle nach Erkennung von Krankheitserregern durch den T-Zellrezeptor „aufklappen“. Weiterhin konnten die Autoren zeigen, dass das „Aufklappen“ von Lck tatsächlich mit einer Erhöhung der enzymatischen Aktivität des Enzyms einhergeht und mit der Phosphorylierung der zeta-Kette in der T-Zelle korreliert. Somit konnte durch den Zugang erstmals gezeigt werden, dass Lck im Rahmen der T-Zellaktivierung de novo aktiviert wird.

Mit ihrer Arbeit haben die Immunologen maßgebliche Erkenntnisse in Bezug auf die ersten Schritte der T-Zellaktivierung geliefert. Diese Erkenntnisse sind insofern von Bedeutung, als Pharmafirmen seit vielen Jahren versuchen, Inhibitoren gegen das Lck-Molekül herzustellen, die im klinischen Alltag, z.B. bei der Behandlung von Autoimmunerkrankungen oder auch malignen Erkrankungen eingesetzt werden könnten.

„Wir sind sehr stolz, dass es uns gelungen ist, mittels einer hochsensitiven mikroskopischen Technik, die nur an wenigen Laboratorien weltweit zur Verfügung steht, erstmals zu demonstrieren, dass Lck im Rahmen der T-Zellaktivierung einer deutlichen de novo Aktivierung unterworfen wird“, so der verantwortliche Autor der Veröffentlichung, Prof. Dr. Burkhart Schraven, Direktor des Instituts für Molekulare und klinische Immunologie an der Medizinischen Fakultät der Otto-von-Guericke-Universität Magdeburg (OVGU) und Leiter der Abteilung Immunkontrolle am Helmholtz-Zentrum für Infektionsforschung in Braunschweig. „Mit unserer Arbeit haben wir einen wichtigen Beitrag zu dem seit vielen Jahren währenden wissenschaftlichen Disput um das Lck-Molekül und dessen Biologie geleistet und denken, dass wir eine zentrale Frage der T-Zellimmunologie klären konnten“. Weiter: „Das Besondere an unserer Technik besteht darin, dass mittels ähnlicher Biosensoren nicht nur das Immunsystem untersucht werden kann bzw. Aktivierungsprozesse im Immunsystem, sondern dass es generell möglich ist, die Aktivität ähnlich aufgebauter Moleküle im gesamten Körper zum Beispiel auch im Zentralnervensystem, in der Niere, in der Lunge oder in anderen Organen im Detail zu untersuchen. Wir sind gespannt auf die Resonanz die unser Artikel hervorruft“.

Originalveröffentlichung:
T Cell Activation Results in Conformational Changes in the Src Family Kinase Lck to Induce Its Activation
[DOI: 10.1126/scisignal.2003607]
http://stke.sciencemag.org/cgi/content/abstract/6/263/ra13
Kontakt:
Professor Dr. med. Burkhart Schraven
Institut für Molekulare und Klinische Immunologie
Otto-von-Guericke-Universität Magdeburg
Email: burkhart.schraven@med.ovgu.de
Tel: + 49-(0)391-67-15800
WEB: http://www.med.uni-magdeburg.de/fme/institute/iim/

Kornelia Suske | idw
Weitere Informationen:
http://www.med.uni-magdeburg.de/fme/institute/iim/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften