Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mäusemänner betören mit ihrem Duft

31.10.2013
Den Geruch von Urin nehmen Menschen als eher unangenehm wahr, aber weibliche Mäuse finden ihn so anziehend wie Aftershave.

Forscher vom Konrad-Lorenz-Institut für Vergleichende Verhaltensforschung an der Vetmeduni Vienna untersuchten rund 100 Hausmäuse und fanden heraus, dass Männchen, die besonders viele „Duft“-Markierungen hinterlassen, mehr Nachkommen produzieren. Wahrscheinlich können Mausweibchen aus den Markierungen Schlüsse auf die Qualität der Männchen ziehen. Die Forscher veröffentlichten ihre Daten im Fachjournal Animal Behaviour.


"Stinkende" Mäuseriche haben mehr Erfolg bei den Damen und produzieren mehr Nachkommen.
Bild: Kerstin Thonhauser / Vetmeduni Vienna

Viele Tiere markieren ihr Territorium, indem sie an strategischen Punkten urinieren. Dieses Verhalten ist ein wichtiges Kommunikationsmittel und stellt unter anderem klar, wer sozial dominant oder untergeordnet ist. Markierungen dienen wahrscheinlich auch dem Werben um die Weibchen und sollen mögliche Mitbewerber abschrecken. Der Geruch der Mäusemarkierungen scheint ein sekundäres Geschlechtsmerkmal zu sein – vergleichbar mit den Federn eines Pfaus. Weibchen können also über den Duft beurteilen, ob ein Männchen stark und gesund ist. Untergeordnete Mäusemänner oder gar kranke produzieren weniger auffällige und attraktive Duftmarkierungen.

Die besseren Markierer haben mehr Nachkommen

Weibliche Mäuse durften für die Studie ihre Sexualpartner frei wählen und dann ihre Jungtiere austragen. Vaterschaftsanalysen bei den Nachkommen ergaben, dass gerade die Männchen, die zuvor am stärksten markierten, auch am häufigsten Väter wurden. Der Verhaltensforscher Dustin Penn erklärt: „Wir zeigen hier erstmals, dass die sexuelle Selektion das Markierverhalten aufrecht erhält. Weibchen wählen nämlich die starken Markierer für die Fortpflanzung aus, wenn sie frei wählen können.“

Es gibt verschiedene Erklärungsmodelle dafür, warum Weibchen sich für die stärkeren Markierer entscheiden. Einerseits vermittelt starkes Markieren wahrscheinlich gute Gesundheit und Kondition der Männchen. Markieren kostet allerdings Energie. Schwache Männchen können es sich also gar nicht leisten, viel zu markieren. Darüber hinaus locken die Tiere mit ihrem Markierungsverhalten ungewollt Fressfeinde an, und das können sich schwache Mäuse schon gar nicht leisten.

Der Geruch fremder Männchen regt Markierverhalten an

Es war bereits bekannt, dass dominante Männchen ihr Territorium stärker markieren als untergeordnete. Erstautorin Kerstin Thonhauser und ihre Kollegen wollten herausfinden was passiert, wenn fremde Männchen in das Territorium anderer männlicher Mäuse eindringen. Um dies herauszufinden, simulierten die Forscher Eindringlinge, indem sie die Käfige mit PVC Platten auslegten. Nach einiger Zeit vertauschten die Forscher die Platten mit denen anderer Männchen und entließen die einzelnen Mäuseriche wieder in die nun fremd riechenden Käfige. Dort konnten die Mäuse erneut ihre eigenen Duftmarken setzen. Nach Auswertung der Markierungsspuren zeigte sich eindeutig, dass männliche Mäuse stärker Markieren, wenn sie dem Geruch anderer Mausmännchen ausgesetzt sind. Sie versuchen also Eindringlinge mit starker Markierung abzuschrecken.

Schwächere Männchen sind nur die „guten Freunde“

Die sexuell weniger erfolgreichen Männchen gehen aber auch nicht leer aus. Mausweibchen bevorzugen es, mit den weniger attraktiven Männchen Zeit zu verbringen, während sie die starken Männer zum Fortpflanzen auswählen. Die „guten Freunde“ sind also nicht gleich attraktive Sexualpartner. Die Forscher untersuchen nun die genaue Zusammensetzung des Urins der Tiere. Vielleicht finden sie hier Hinweise darauf, wie Mäuse Informationen über Gesundheit und körperliche Kondition im Markierverhalten weitergeben.

Die Studie „Scent marking increases male reproductive success in wild house mice“, von Kerstin E. Thonhauser, Shirley Raveh, Attila Hettyey, Helmut Beissmann und Dustin J. Penn wurde im Jounal Animal Behaviour veröffentlicht. http://www.sciencedirect.com/science/article/pii/S0003347213003904

Über die Veterinärmedizinische Universität Wien

Die Veterinärmedizinische Universität Wien (Vetmeduni Vienna) ist die einzige universitäre veterinärmedizinische Bildungs- und Forschungsstätte Österreichs und zugleich die älteste im deutschsprachigen Raum. Die Vetmeduni Vienna beschäftigt 1200 Mitarbeiter und bildet zurzeit 2300 Studierende aus. Der Campus liegt im Norden von Wien und beherbergt ein Tierspital und zahlreiche Spin-Off Unternehmen. http://www.vetmeduni.ac.at

Wissenschaftlicher Kontakt:
Dr. Dustin Penn
Konrad-Lorenz-Institut für Vergleichende Verhaltensforschung
Veterinärmedizinische Universität Wien (Vetmeduni Vienna)
T +43 1 4890915 M +43 664 60257-6050
dustin.penn@vetmeduni.ac.at
Aussenderin:
Dr.rer.nat. Susanna Kautschitsch
Wissenschaftskommunikation / Public Relations
Veterinärmedizinische Universität Wien (Vetmeduni Vienna)
T +43 1 25077-1153
susanna.kautschitsch@vetmeduni.ac.at

Dr. Susanna Kautschitsch | idw
Weitere Informationen:
http://www.vetmeduni.ac.at
http://www.vetmeduni.ac.at/de/infoservice/presseinformationen/presseinfo2013/maeuse-duft/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie