Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mäuse mit Mutationen für seltene menschliche Erbkrankheiten

06.02.2015

Wissenschaftler statten Mäuse-Stammzellen mit Gen-Defekten aus, wie sie bei menschlichen Erkrankungen auftreten

Jeder Mensch ist einzigartig – genauso wie sein Erbgut. Auch Veränderungen im Erbgut, sogenannte Mutationen, sind von Mensch zu Mensch unterschiedlich. Manche Mutationen verändern die Buchstabenfolge des genetischen Codes, andere betreffen die DNA-Struktur. Bei letzteren sind größere Abschnitte der DNA in ihrer Anzahl oder Position verändert.

Diese Veränderungen waren bisher nur sehr schwieirg oder gar nicht in der Maus nachzustellen. Forscher vom Max-Planck-Institut für molekulare Genetik in Berlin haben jetzt gemeinsam mit Kollegen der Charitè – Universitätsmedizin Berlin eine neue Methode entwickelt, mit der sie strukturelle Mutationen des Menschen schnell und einfach in Mäusen nachbauen können. Die Wissenschaftler haben erstmals exemplarisch eine menschliche strukturelle Mutation, die mit dem Verlust von über 300.000 Basenpaaren einhergeht, in der Maus erzeugt und damit ein Modell für diese Erkrankung geschaffen.

Bei Mutationen werden oft nur einzelne Buchstaben des genetischen Codes durch einen anderen ersetzt. Es kann aber auch zu größeren Umbauten kommen: So können ganze DNA-Abschnitte ins Erbmaterial eingefügt oder ausgelassen werden. Manchmal werden auch größere Abschnitte, die viele Gene beinhalten können, kopiert und vervielfacht.

Andere gehen verloren oder werden an falsche Positionen versetzt. Solche Veränderungen können sehr unterschiedliche Auswirkungen auf einen Organismus haben. Manche verringern oder erhöhen die Aktivität von Genen. Die Folge können dann zum Beispiel Krebs oder sogenannte „seltene“ Erkrankungen sein.

Insge­samt leiden in Europa mindestens 26 bis 30 Millionen Menschen an diesen – nur relativ gesehen – seltenen Krankheiten. Häufig verringern sie die Lebenserwartung und Lebensqualität der Betroffenen und ihrer Familien. Weil sie nicht sehr häufig auftreten und die Symptome von Patient zu Patient sehr unterschiedlich sein können, ist die gezielte Untersuchung seltener Erkrankungen schwierig. Zudem treten viele Veränderungen bereits während der embryonalen Entwicklung auf und sind daher für die Wissenschaftler nicht zu beobachten.

Mit einer Abwandlung des CRISPR/Cas-Verfahren haben die Berliner Forscher nun große strukturelle Umbauten im Erbgut des Menschen in Mäusen nachgebaut. Cas-Proteine sind Enzyme, mit denen Bakterien sich vor Eindringlingen wie Viren schützen. In dem Verfahren schneiden die Enzyme das DNA-Molekül von embryonalen Mäuse-Stammzellen gezielt an zwei zuvor festgelegten Stellen. Bei der Reparatur wird ein DNA-Abschnitt zwischen den beiden Schnittstellen eingefügt oder ausgelassen. Auf diese Weise können Forscher im Maus-Erbgut an derselben Stelle Veränderungen vornehmen, wie sie auch bei Erbkrankheiten des Menschen auftreten.

In nur wenigen Wochen lassen sich die Stammzellen so mit den entsprechenden Mutationen ausstatten. Die aus diesen Stammzellen hervorgehenden Tiere tragen in ihrem Genom genau die gleiche genetische Veränderung wie die betroffenen Menschen. Für die Wissenschaftler ist dies der einzige Weg, um mehr über die Erkrankung zu erfahren und auf dieser Grundlage möglicherweise geeignete Therapien zu entwickeln.

In einer ersten Anwendung der Methode haben die Wissenschaftler in embryonale Stammzellen von Mäusen einen Teil des Genoms so verändert, wie es auch bei Patienten mit extrem verkürzten Beinknochen vorkommt. Auch die Mäuse bildeten daraufhin zu kurze Beinknochen. An den Tieren können die Wissenschaftler jetzt genauer untersuchen, was dieser Störung zugrunde liegt.

Die Forschungsgruppe von Stefan Mundlos wird unterstützt von einer privaten Förderin der Max-Planck-Förderstiftung.


Ansprechpartner

Prof. Dr. Stefan Mundlos
Max-Planck-Institut für molekulare Genetik, Berlin
Telefon: +49 30 8413-12631449
E-Mail: mundlos@molgen.mpg.de

Dr. Patricia Marquardt
Max-Planck-Institut für molekulare Genetik, Berlin
Telefon: +49 30 8413-1716
Fax: +49 30 8413-1671
E-Mail: patricia.marquardt@molgen.mpg.de


Originalpublikation
Katerina Kraft, Sinje Geuer, Anja J. Will, Wing Lee Chan, Christina Paliou, Marina Borschiwer, Izabela Harabula, Lars Wittler, Martin Franke, Daniel M. Ibrahim, Bjørt K. Kragesteen, Malte Spielmann, Stefan Mundlos, Darío G. Lupiáñez, and Guillaume Andrey

Deletions, Inversions, Duplications: Engineering of Structural Variants Using CRISPR/Cas in Mice

Cell Reports, 5. Februar 2015

Prof. Dr. Stefan Mundlos | Max-Planck-Institut für molekulare Genetik, Berlin
Weitere Informationen:
http://www.mpg.de/8931357/strukturelle-mutationen-crispr-cas

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Seltener Fund aus der Tiefsee
20.02.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Wenn Elektronen Walzer tanzen
20.02.2018 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

Von Bitcoins bis zur Genomchirurgie

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Brücke, die sich dehnen kann

20.02.2018 | Architektur Bauwesen

Wenn Elektronen Walzer tanzen

20.02.2018 | Biowissenschaften Chemie

Forscherteam identifiziert eine neue Klasse von Biokatalysatoren im Abbau mariner Kohlenhydrate

20.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics