Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Made in Germany - und anderswo ... Max-Planck-Forscher entwickeln in Dresden einen Mikroskopie-Bausatz

17.07.2013
– die Nutzung und Weiterentwicklung legen sie in die Hände von Laboren weltweit

Selective Plane Illumination Microscopy (SPIM) ist eine innovative Mikroskopie-Methode, bei der nur wenige Mikrometer dünne Ebenen einer Probe mit Licht angeregt werden. So kann man etwa die Entwicklung eines gesamten Embryos in Echtzeit sichtbar machen.


Passt locker in einen Koffer: Der SPIM-Bausatz. Die Einfachheit des Systems soll zur Weiterentwicklung einladen. Einzige Bedingung: Das neue Wissen muss geteilt werden. Foto: MPI-CBG, Dresden

Da nur hauchdünne Schichten der Probe beleuchtet und abgebildet werden, werden negative Effekte wie Bleichen oder lichtinduzierter Stress minimal gehalten. Forscher in Dresden haben nun einen Grundbausatz entwickelt, mit dem sich jedes Labor einfach und schnell ein solches Mikroskop zusammenbauen kann.

Hilfe dazu gibt es auf einer Website, dort werden auch Ideen zur Weiterentwicklung des Systems gesammelt und mit allen Nutzern geteilt. Diese Offenheit ist Programm: OpenSPIM soll die innovative Mikroskopie-Methode möglichst vielen zugänglich machen und ihre Weiterentwicklung vorantreiben.

Die SPIM-Methode eignet sich vor allem, um die Aktivität einzelner Gene in einem wachsenden Embryo sichtbar zu machen. Da sich aber die Entwicklung mancher Modellorganismen einige Tage hinziehen kann und ihre Genome auch Tausende von Genen umfassen, steht noch viel Arbeit bevor.

Je mehr Leute also parallel mit dieser Technik arbeiten, um so schneller kommen wir voran, dachten sich Forscher am Dresdner Max-Planck-Institut für molekulare Zellbiologie und Genetik (MPI-CBG) – und entwickelten einen Grundbausatz, aus dem sich nun jeder schnell und unkompliziert ein eigenes SPIM-Mikroskop basteln kann. Das Ergebnis dieser Entwicklungsarbeit der Arbeitsgruppen von Pavel Tomancak und Jan Huisken am MPI-CBG ist OpenSPIM, ein Do it yourself-Mikroskop, das einfach, kompakt und mit Modulen erweiterbar ist.

Handlich und idiotensicher
OpenSPIM besteht im Grundaufbau aus einem Anregungslaserstrahl und einem Detektionsobjektiv – dem Grundprinzip der Lichtblatt-Mikroskopie. Gekoppelt ist das ganze System an die Open-Source-Software Fiji. Johannes Schindelin und sein Team an der University of Wisconsin-Madison erweiterten dazu die gängige Software µManager und integrierten sie in die Bildverarbeitungssoftware. Das Ganze passt locker in einen kleinen Rollkoffer. Dass das System wirklich einfach aufzubauen und in Betrieb zu nehmen ist, haben im März Schüler der African Leadership Academy bei einem Mikroskopie-Kurs in Südafrika bewiesen: In weniger als zwei Stunden bauten sie ihr eigenes SPIM-Mikroskop erfolgreich auf. Alle Teilnehmer des Kurses bestätigten die einfache Handhabung des SPIM-Starter Sets, in den Feedback-Bögen dazu notierten sie: „Absolut idiotensicher“.

Auf der Website openspim.org werden in Videos, Texten oder Bildern Hilfestellungen für den Zusammenbau gegeben und alle Bauteile bis ins kleinste Detail erklärt, Hinweise und Feedback von Nutzern gesammelt, sowie Weiterentwicklungen mit allen geteilt. Die Vision der Dresdner Forscher ist, dass sich eine quirlige Community aus Biologen und Mikroskopie-Spezialisten bildet, die gemeinsam die Technologie voranbringen – und dabei ganz nebenbei komplexe biologische Fragen klären.

Originalveröffentlichung:
Peter G Pitrone, Johannes Schindelin, Luke Stuyvenberg, Stephan Preibisch, Michael Weber, Kevin W Eliceiri, Jan Huisken & Pavel Tomancak:
OpenSPIM: an open-access light-sheet microscopy platform
Nature Methods 10, 598–599 (2013), doi:10.1038/nmeth.2507
Florian Frisch
Information Office
Max Planck Institute of
Molecular Cell Biology and Genetics
Pfotenhauerstr. 108
01307 Dresden
phone: +49 351 210 2840
fax: +49 351 210 1689
www.twitter.com/infooffice

Florian Frisch | Max-Planck-Institute
Weitere Informationen:
http://www.mpi-cbg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics