Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Luxemburger Forscher entschlüsseln, wie der Körper Stammzellen steuert

15.03.2017

Stammzellen sind nicht-spezialisierte Zellen, die sich in alle Zelltypen des menschlichen Körpers verwandeln können. Bisher verstehen Wissenschaftler jedoch nur in Ansätzen, wie der Organismus das Schicksal dieser Alleskönner steuert und welche Faktoren darüber entscheiden, ob sich eine Stammzelle in eine Blut- Leber oder Nervenzelle differenziert. Wissenschaftler des Luxembourg Centre for Systems Biomedicine (LCSB) der Universität Luxemburg haben nun mit einem internationalen Team einen ausgeklügelten Mechanismus identifiziert, mit dem der Körper für einen geordneten Nachwuchs an roten und weißen Blutkörperchen aus solchen Vorläuferzellen sorgt.

„Diese Erkenntnis kann uns in Zukunft dabei helfen, Stammzelltherapien zu verbessern, so Dr. Alexander Skupin, Leiter der Arbeitsgruppe „Integrative Cell Signalling“. Das Team des LCSB hat seine Ergebnisse jetzt im wissenschaftlichen Fachjournal PLOS Biology (DOI:10.1371/journal.pbio.2000640) veröffentlicht.


Luxemburger Forscher entschlüsseln, wie der Körper Stammzellen steuert

ScienceRelations

Obwohl alle Zellen eines Organismus die gleiche genetische Bauanleitung, die DNA, besitzen, arbeiten manche von ihnen beispielsweise als Blut- oder Knochen-, andere dagegen als Nerven- oder Hautzellen. Zwar verstehen Forscher mittlerweile recht gut, wie einzelne Zellen funktionieren. Doch wie es dem Körper gelingt, aus dem gleichen genetischen Strickmuster verschiedene Zelltypen entstehen zu lassen und an die richtige Position im Organismus zu bringen, ist weitgehend unklar.

Um diesen Prozess besser verstehen zu können, haben Alexander Skupin und sein Team Blutstammzellen von Mäusen mit Wachstumshormonen behandelt und sich dann genauer angesehen, wie sich diese Vorläuferzellen während der Differenzierung in weiße oder rote Blutkörperchen verhalten. Dabei beobachteten die Forscher, dass diese Verwandlung nicht gradlinig und zielgerichtet verläuft, sondern vielmehr opportunistisch:

Die Vorläuferzelle passt sich den Bedürfnissen der Umgebung an und gliedert sich im Körper dort ein, wo neue Zellen gebraucht werden. „Es ist also nicht so, dass die Zelle einmal am Anfang ihrer Differenzierung einen Fahrschein zieht und dann direkt bis ans Ziel fährt. Sie steigt vielmehr zwischendurch öfter aus und schaut dann, welche Fahrtrichtung die beste für sie ist“, erläutert Alexander Skupin.

Durch diesen ausgeklügelten Mechanismus gelingt es dem mehrzelligen Organismus, den Nachwuchs neuer Zellen an den aktuellen Bedarf anzupassen: „Bevor sich die Vorläuferzellen endgültig ausdifferenzieren, verlieren sie zunächst ihren Stammzellcharakter und schauen dann quasi, welche Zelllinie gerade gefragt ist. Erst dann verwandeln sie sich in den Zelltyp, der am besten zu ihren Eigenschaften passt und der in ihrer Umgebung vorherrscht“, so Alexander Skupin.

Der Forscher vergleicht diesen Schritt mit einem Roulettespiel, in der die unterschiedlich nummerierten Vertiefungen des Roulettekessels, in die die Kugel fallen kann, den verschiedenen Zelltypen entsprechen. „Wenn die Zellen ihren Stammzellen-Charakter verlieren, werden sie quasi in den Roulettekessel hineingeworfen und wandern dann zunächst ziellos in ihm umher. Erst wenn sie das die passende Umgebung gefunden haben, landen die Zellen – so wie die Roulettekugel in einem nummerierten Fach – darin und differenzieren sich endgültig.“

Damit kann der Körper für einen geordneten Zellnachwuchs sorgen und gleichzeitig verhindern, dass Stammzellen frühzeitig fehlgeleitet werden: „Denn auch wenn eine Zelle eine falsche Richtung einschlägt, wird sie spätestens dann aussortiert, wenn ihre Eigenschaften nicht geeignet sind für die Nische bzw. das Fach, in dem sie gelandet ist“, so Skupin.

Mit ihrer Studie haben Alexander Skupin und sein Team erstmals zeigen können, dass das spätere Schicksal einer Vorläuferzelle nicht eindeutig vorgezeichnet ist und auf einer geraden Schiene verläuft. „Diese Beobachtung widerspricht der gängigen Lehrmeinung, dass Stammzellen von Anfang an in eine bestimmte Richtung programmiert werden“, so Alexander Skupin.

Der Forscher ist sich zudem sicher, dass die Abläufe bei anderen Vorläuferzellen ähnlich sind: „Bei so genannten iPS Zellen, also induzierten pluripotenten Stammzellen, die sich in viele unterschiedliche Zelltypen verwandeln können, haben wir im Labor das gleiche Differenzierungsmuster beobachtet.“

Dieses Wissen kann den Forschern in Zukunft dabei helfen, die Wirksamkeit von Stammzelltherapien zu verbessern. Bei dieser Art von Behandlung werden den Patienten körpereigene Stammzellen verabreicht, um Zellen zu ersetzen, die bei den Betroffenen krankheitsbedingt absterben, wie beispielsweise bei der Parkinsonschen Krankheit. Zwar wird seit vielen Jahren intensiv daran geforscht, diese vielversprechende Behandlungsmethode einzusetzen.

Doch bisher hat die Therapie mit körpereigenen Stammzellen nur wenig klinische Fortschritte gebracht. Sie ist zudem umstritten, da sie häufig von starken Nebenwirkungen begleitet wird und nicht ausgeschlossen werden kann, dass bestimmte Zellen entarten, also Krebs auslösen. „Da wir nun besser verstehen, wie der Körper die Richtung beeinflusst, in die sich Stammzellen differenzieren, können wir diesen Prozess in Zukunft hoffentlich besser steuern“, so Alexander Skupin.

Thomas Klein | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni.lu

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wasserbewegung als Hinweis auf den Zustand von Tumoren
19.04.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Verbesserte Stabilität von Kunststoff-Leuchtdioden
19.04.2018 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics