Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Long Noncoding RNAs Control Development of Fat Cells

15.02.2013
Whitehead Institute researchers have identified a previously unrecognized layer of genetic regulation that is necessary for the generation of undesirable white fat cells. When this regulation is disrupted, white fat cells are unable to accumulate lipid droplets or mature from their precursors.

“We’re trying to figure out what the mechanism is—what it takes to make fat cells,” says Whitehead Founding Member Harvey Lodish, who is also a professor of biology and a professor of bioengineering at MIT. “The obvious reason we’re interested in this is because a lot of people have too many of them.”

According to the Centers for Disease Control and Prevention, obesity—having a body mass index (BMI) of 30 or higher—is a serious healthcare and economic problem in the United States. More than one-third of American adults are obese, a condition that can lead to heart disease, type 2 diabetes, and stroke. In 2008 obesity-related issues were estimated to cost $147 billion.

All of these problems are caused by an overabundance of white fat cells—adipose tissue cells that store excess energy as fat or lipid droplets. Unlike white fat cells, brown fat cells, which are most prevalent in babies and have a reduced presence in adults, use lipids as fuel to maintain a stable, warm body temperature. Understanding how both types of fat cells are formed and maintained may one day lead to anti-obesity therapies.

In the quest to understand fat-cell generation and maintenance, the Lodish lab scanned mouse fat cells to determine which of the cells’ long noncoding RNAs (lncRNAs) are active. Of the 175 identified, 10 lncRNAs were found to play significant roles in these cells.

Residing within what was once dubbed “junk DNA”, lncRNAs have recently gained fame as important gene expression regulators that modify chromatin, enhance transcription, and promote messenger RNA (mRNA) degradation, as well as through other methods that have yet to be elucidated. Recently, the Lodish lab identified lncRNAs as playing a vital role in regulating programmed cell death during one of the final stages of red blood cell differentiation.

To determine the function of the identified active lncRNAs in fat cells, Lei Sun, a former postdoctoral researcher in the Lodish lab, and Loyal Goff from Harvard University and the Broad Institute, knocked each lncRNA down individually in fat precursor cells and analyzed the results. When 10 of these lncRNAs had reduced expression, the cells did not turn on the genes that are usually expressed in mature white fat cells, and the cells had significantly smaller lipid droplets than white fat cells with normal lncRNA expression. Their work is reported in this week’s issue of the Proceedings of the National Academy of Sciences (PNAS).

“This is the first study showing the importance of lncRNAs for the regulation of adipogeneis,” says Sun, who is now an assistant professor at Duke-NUS Graduate Medical School. “Our understanding of lncRNA function in these cells is still incomplete, but in the future, this line of research may reveal new pathways that obesity drugs could target.”

This research was supported by National Institutes of Health (DK047618, DK068348, 5P01HL066105, and 1DP2OD00667), National Science Foundation, Damon Runyon Cancer Research Foundation, Agency of Science, Technology and Research, Singapore, Searle Scholars Program, Smith Family Awards Program, and Merkin Family Foundation.

Written by Nicole Giese Rura

Harvey Lodish’s primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a professor of biology and a professor of bioengineering at Massachusetts Institute of Technology.

Full Citation:

“Long noncoding RNAs regulate adipogenesis”

PNAS, online the week of February 11, 2013.

Lei Sun (a,1), Loyal A. Goff (b,c,d,1), Cole Trapnell (b,c,1), Ryan Alexander (a,d), Kinyui Alice Lo (a,d), Ezgi Hacisuleyman (b,e), Martin Sauvageau (b,c,e), Barbara Tazon-Vega (b,c), David R. Kelley (b,c), David G. Hendrickson (b,c), Bingbing Yuan (a), Manolis Kellis (c,d), Harvey F. Lodish (a,f,g), and John L. Rinn (b,c,e).

a. Whitehead Institute for Biomedical Research, Cambridge, MA 02142
b. Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
c. The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142
d. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139
e. Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
f. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
g. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139

1. These authors contributed equally to this work.

Nicole Giese Rura | Newswise
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics