Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Löwenzahn schützt sich mit Latex vor Maikäfer-Larven

06.01.2016

Der Löwenzahn gilt vielen als ein lästiges Unkraut. Neben Hobby-Gärtnern hat die Pflanze auch in der Natur viele Feinde. Vor diesen schützt sie sich mit einem latexhaltigen Saft. Wissenschaftler des Max-Planck-Instituts für chemische Ökologie in Jena und der Universität Bern konnten jetzt nachweisen, dass eine einzige Substanz aus dem bitteren Latexsaft die Wurzeln des Löwenzahns gegen gefräßige Maikäferlarven wirksam schützt. Latex ist demnach für die pflanzliche Verteidigung gegen Bodenschädlinge entscheidend. (PLOS Biology, Januar 2016, Open Access)

Der Löwenzahn ist ein Überlebenskünstler


Eine Maikäferlarve (Melolontha melolontha) frisst an der Wurzel eines Löwenzahns. Die Pflanze wehrt sich mit bitterem Latex aus ihren Wurzeln.

Meret Huber / Max-Planck-Institut für chemische Ökologie, PLOS Biology


Meret Huber erforscht die Verteidigung des Löwenzahns gegen Wurzelschädlinge.

Anna Schroll

Der Löwenzahn (Taraxacum officinale agg.) ist eine der bekanntesten Pflanzen. Sie kommt ursprünglich aus Europa und Asien und hat sich fast in der gesamten nördlichen Hemisphäre verbreitet. Kinder lieben die gelben Blüten und noch mehr die sogenannten „Pusteblumen“ mit den kleinen Fallschirmen gleichen Samen, die vom Wind über große Entfernungen getragen werden. Aus den Samen wachsen Pflanzen mit einer Kraft, die sogar Asphalt überwinden kann. Sie sind damit zu einem Symbol für das Überleben in der modernen Großstadt geworden.

Auf dem Feld und in der Wiese muss sich die Pflanze jedoch gegen viele Fraßfeinde zur Wehr setzen. Zu diesen Feinden zählen auch Maikäferlarven. Der Maikäfer (Melolontha melolontha) verbringt seine ersten drei Lebensjahre unter der Erde, wo er sich als Larve oder Engerling von den Wurzeln verschiedener Pflanzen ernährt. Seine Lieblingsspeise sind die Wurzeln des Löwenzahns.

Wie viele andere Pflanzen produziert der Löwenzahn sekundäre Abwehrstoffe, die ihn vor Insektenfraß schützen sollen. Einige dieser Abwehrstoffe, zu denen insbesondere Terpene und Phenole gehören, sind auch pharmazeutisch interessant und gelten auch als vielversprechende Wirkstoffe gegen Krebs. Die wichtigsten dieser Metaboliten sind Bitterstoffe, die vor allem in dem milchigen Saft zu finden sind, der Latex genannt wird und der in fast zehn Prozent aller Blütenpflanzen vorkommt.

Warum Löwenzahn-Latex bitter ist

Diesen Löwenzahn-Latex haben jetzt Forscher der Abteilung Biochemie zusammen mit ihren Kollegen von der Universität in Bern genauer unter die Lupe genommen. Die Wissenschaftler fanden die höchsten Konzentrationen des bitteren Latex in den Wurzeln der Löwenzahnpflanzen. Die Wurzeln sind für die Pflanze als Hauptspeicherorgan für Nährstoffe besonders wichtig und schützenswert, weil sie schon früh im Jahr die Blütenbildung ermöglichen.

Eine einzige chemische Verbindung schützt die Pflanze

Die Wissenschaftler testeten zunächst, ob sich die Latexverbindungen des Löwenzahns negativ auf die Entwicklung der Maikäfer-Larven auswirken und umgekehrt den Gesundheitszustand und die Vermehrung der Pflanze unter Engerlingsbefall verbessern. Eine Analyse der Einzelkomponenten des Löwenzahnlatex ergab, dass eine einzelne Substanz das Larvenwachstum negativ beeinflusst. Es handelte sich dabei um das Sesquiterpenlacton Taraxinsäure-Beta-D-Glycopyranosyl-Ester (TA-G). Wurde die gereinigte Substanz in ökologisch relevanten Mengen einer künstlichen Larvennahrung beigemengt, fraßen die Engerlinge weniger.

Den Forschern gelang es, das Enzym zu identifizieren, das den ersten Schritt zur TA-G-Biosynthese katalysiert. Wurzeln von genetisch veränderten Pflanzen ohne das Enzym und damit auch ohne den Abwehrstoff wurden deutlich häufiger von Larven gefressen. Die chemische Zusammensetzung des Latex variiert zwischen verschiedenen natürlichen Löwenzahn-Linien Ein gewöhnliches Gartenexperiment mit Löwenzahn-Pflanzen unterschiedlicher Linien machte deutlich, dass Pflanzen, die viel TA-G produzierten, im Vergleich zu anderen Pflanzen gesünder sind und sich stärker vermehren, wenn sie von wurzelfressenden Engerlingen attackiert werden „Dass eine einzige chemische Verbindung ausreicht, um die Pflanze gegen den Engerling zu schützen, ist eine Überraschung“, sagt Jonathan Gershenzon, der Leiter der Abteilung Biochemie am Max-Planck-Institut in Jena. „Der Latex von Löwenzahn und anderen Pflanzen enthält so viele unterschiedliche Substanzen, dass es uns eher unwahrscheinlich erschien, dass eine davon allein eine so herausragende Rolle bei der Insektenabwehr spielen kann.“

Die Kombination der Methoden als Schlüssel zum Erfolg

„Entscheidend für den Erfolg der Untersuchungen war die Kombination verschiedener Forschungsansätze“, meint Matthias Erb von der Universität Bern, der die Studie geleitet hat. „Jeder dieser Ansätze hat seine Schwächen, die durch die Stärken der anderen ausgeglichen wurden. Unsere interdisziplinäre Herangehensweise hat sich als sehr wirkungsvoll im Hinblick auf das Verständnis biologischer Systeme erwiesen.“

In weiteren Experimenten wollen sich die Forscher der Co-Evolution von Löwenzahn-Pflanzen und ihren Wurzelschädlingen widmen und herausfinden, ob die Anwesenheit solcher Fraßfeinde die Pflanzenchemie im Laufe der Evolution verändert hat und ob sich wurzelfressende Insekten an die bitteren Latexverbindungen angepasst haben. [AO]

Originalveröffentlichung:
Huber, M., Epping, J., Schulze Gronover, C., Fricke, J., Aziz, Z., Brillatz, T., Swyers, M., Köllner, T. G., Vogel, H., Hammerbacher, A., Triebwasser-Freese, D., Robert, C. A. M., Verhoeven, K., Preite, V. Gershenzon, J., Erb, M. (2016). A latex metabolite benefits plant fitness under root herbivore attack. PLOS Biology, DOI: 10.1371/journal.pbio.1002332. Open Access
http://dx.doi.org/10.1371/journal.pbio.1002332

Weitere Informationen:
Meret Huber, Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-1329, mhuber@ice.mpg.de
Matthias Erb, Universität Bern, Institut für Pflanzenwissenschaften, Altenbergrain 21, CH-3013 Bern, Schweiz, +41 31 631 8668, matthias.erb@ips.unibe.ch
Jonathan Gershenzon, Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-1301, gershenzon@ice.mpg.de

Kontakt und Bildanfragen:
Angela Overmeyer M.A., Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie
Weitere Informationen:
http://www.ice.mpg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Spot auf die Maschinerie des Lebens
23.08.2017 | Max-Planck-Institut für die Physik des Lichts, Erlangen

nachricht Immunsystem kann durch gezielte Manipulation des Zellstoffwechsels reguliert werden
23.08.2017 | Medical University of Vienna

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie

Entfesselte Magnetkraft

23.08.2017 | Physik Astronomie