Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Löwenzahn schützt sich mit Latex vor Maikäfer-Larven

06.01.2016

Der Löwenzahn gilt vielen als ein lästiges Unkraut. Neben Hobby-Gärtnern hat die Pflanze auch in der Natur viele Feinde. Vor diesen schützt sie sich mit einem latexhaltigen Saft. Wissenschaftler des Max-Planck-Instituts für chemische Ökologie in Jena und der Universität Bern konnten jetzt nachweisen, dass eine einzige Substanz aus dem bitteren Latexsaft die Wurzeln des Löwenzahns gegen gefräßige Maikäferlarven wirksam schützt. Latex ist demnach für die pflanzliche Verteidigung gegen Bodenschädlinge entscheidend. (PLOS Biology, Januar 2016, Open Access)

Der Löwenzahn ist ein Überlebenskünstler


Eine Maikäferlarve (Melolontha melolontha) frisst an der Wurzel eines Löwenzahns. Die Pflanze wehrt sich mit bitterem Latex aus ihren Wurzeln.

Meret Huber / Max-Planck-Institut für chemische Ökologie, PLOS Biology


Meret Huber erforscht die Verteidigung des Löwenzahns gegen Wurzelschädlinge.

Anna Schroll

Der Löwenzahn (Taraxacum officinale agg.) ist eine der bekanntesten Pflanzen. Sie kommt ursprünglich aus Europa und Asien und hat sich fast in der gesamten nördlichen Hemisphäre verbreitet. Kinder lieben die gelben Blüten und noch mehr die sogenannten „Pusteblumen“ mit den kleinen Fallschirmen gleichen Samen, die vom Wind über große Entfernungen getragen werden. Aus den Samen wachsen Pflanzen mit einer Kraft, die sogar Asphalt überwinden kann. Sie sind damit zu einem Symbol für das Überleben in der modernen Großstadt geworden.

Auf dem Feld und in der Wiese muss sich die Pflanze jedoch gegen viele Fraßfeinde zur Wehr setzen. Zu diesen Feinden zählen auch Maikäferlarven. Der Maikäfer (Melolontha melolontha) verbringt seine ersten drei Lebensjahre unter der Erde, wo er sich als Larve oder Engerling von den Wurzeln verschiedener Pflanzen ernährt. Seine Lieblingsspeise sind die Wurzeln des Löwenzahns.

Wie viele andere Pflanzen produziert der Löwenzahn sekundäre Abwehrstoffe, die ihn vor Insektenfraß schützen sollen. Einige dieser Abwehrstoffe, zu denen insbesondere Terpene und Phenole gehören, sind auch pharmazeutisch interessant und gelten auch als vielversprechende Wirkstoffe gegen Krebs. Die wichtigsten dieser Metaboliten sind Bitterstoffe, die vor allem in dem milchigen Saft zu finden sind, der Latex genannt wird und der in fast zehn Prozent aller Blütenpflanzen vorkommt.

Warum Löwenzahn-Latex bitter ist

Diesen Löwenzahn-Latex haben jetzt Forscher der Abteilung Biochemie zusammen mit ihren Kollegen von der Universität in Bern genauer unter die Lupe genommen. Die Wissenschaftler fanden die höchsten Konzentrationen des bitteren Latex in den Wurzeln der Löwenzahnpflanzen. Die Wurzeln sind für die Pflanze als Hauptspeicherorgan für Nährstoffe besonders wichtig und schützenswert, weil sie schon früh im Jahr die Blütenbildung ermöglichen.

Eine einzige chemische Verbindung schützt die Pflanze

Die Wissenschaftler testeten zunächst, ob sich die Latexverbindungen des Löwenzahns negativ auf die Entwicklung der Maikäfer-Larven auswirken und umgekehrt den Gesundheitszustand und die Vermehrung der Pflanze unter Engerlingsbefall verbessern. Eine Analyse der Einzelkomponenten des Löwenzahnlatex ergab, dass eine einzelne Substanz das Larvenwachstum negativ beeinflusst. Es handelte sich dabei um das Sesquiterpenlacton Taraxinsäure-Beta-D-Glycopyranosyl-Ester (TA-G). Wurde die gereinigte Substanz in ökologisch relevanten Mengen einer künstlichen Larvennahrung beigemengt, fraßen die Engerlinge weniger.

Den Forschern gelang es, das Enzym zu identifizieren, das den ersten Schritt zur TA-G-Biosynthese katalysiert. Wurzeln von genetisch veränderten Pflanzen ohne das Enzym und damit auch ohne den Abwehrstoff wurden deutlich häufiger von Larven gefressen. Die chemische Zusammensetzung des Latex variiert zwischen verschiedenen natürlichen Löwenzahn-Linien Ein gewöhnliches Gartenexperiment mit Löwenzahn-Pflanzen unterschiedlicher Linien machte deutlich, dass Pflanzen, die viel TA-G produzierten, im Vergleich zu anderen Pflanzen gesünder sind und sich stärker vermehren, wenn sie von wurzelfressenden Engerlingen attackiert werden „Dass eine einzige chemische Verbindung ausreicht, um die Pflanze gegen den Engerling zu schützen, ist eine Überraschung“, sagt Jonathan Gershenzon, der Leiter der Abteilung Biochemie am Max-Planck-Institut in Jena. „Der Latex von Löwenzahn und anderen Pflanzen enthält so viele unterschiedliche Substanzen, dass es uns eher unwahrscheinlich erschien, dass eine davon allein eine so herausragende Rolle bei der Insektenabwehr spielen kann.“

Die Kombination der Methoden als Schlüssel zum Erfolg

„Entscheidend für den Erfolg der Untersuchungen war die Kombination verschiedener Forschungsansätze“, meint Matthias Erb von der Universität Bern, der die Studie geleitet hat. „Jeder dieser Ansätze hat seine Schwächen, die durch die Stärken der anderen ausgeglichen wurden. Unsere interdisziplinäre Herangehensweise hat sich als sehr wirkungsvoll im Hinblick auf das Verständnis biologischer Systeme erwiesen.“

In weiteren Experimenten wollen sich die Forscher der Co-Evolution von Löwenzahn-Pflanzen und ihren Wurzelschädlingen widmen und herausfinden, ob die Anwesenheit solcher Fraßfeinde die Pflanzenchemie im Laufe der Evolution verändert hat und ob sich wurzelfressende Insekten an die bitteren Latexverbindungen angepasst haben. [AO]

Originalveröffentlichung:
Huber, M., Epping, J., Schulze Gronover, C., Fricke, J., Aziz, Z., Brillatz, T., Swyers, M., Köllner, T. G., Vogel, H., Hammerbacher, A., Triebwasser-Freese, D., Robert, C. A. M., Verhoeven, K., Preite, V. Gershenzon, J., Erb, M. (2016). A latex metabolite benefits plant fitness under root herbivore attack. PLOS Biology, DOI: 10.1371/journal.pbio.1002332. Open Access
http://dx.doi.org/10.1371/journal.pbio.1002332

Weitere Informationen:
Meret Huber, Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-1329, mhuber@ice.mpg.de
Matthias Erb, Universität Bern, Institut für Pflanzenwissenschaften, Altenbergrain 21, CH-3013 Bern, Schweiz, +41 31 631 8668, matthias.erb@ips.unibe.ch
Jonathan Gershenzon, Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-1301, gershenzon@ice.mpg.de

Kontakt und Bildanfragen:
Angela Overmeyer M.A., Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie
Weitere Informationen:
http://www.ice.mpg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterien aus dem Blut «ziehen»
07.12.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht HIV: Spur führt ins Recycling-System der Zelle
07.12.2016 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie