Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Aus Löwe und Tiger wird ein Liger

19.08.2008
Zwischenartliche Hybride sind häufiger als bisher angenommen. Durch das Vermischen der Genome verschiedener wild lebender Arten können sich Genotypen ausbilden, die besser an die Umweltbedingungen angepasst sind als die beiden Elternarten.

Maultier oder Maulesel sind das Ergebnis einer Kreuzung zwischen Esel und Pferd. Auch andere Säugetierarten können sich insbesondere in Gefangenschaft erfolgreich kreuzen, beispielsweise Tiger und Löwe oder Pferd und Zebra.

Da diese "zwischenartlichen Hybride" jedoch in der Regel steril sind, maßen Biologen der Hybridisierung in freier Wildbahn lange Zeit wenig Bedeutung zu.

Erst seit den 1990er Jahren stellte sich heraus, dass dieses Phänomen im Tierreich gar nicht so selten ist und Hybride sogar vielfach fortpflanzungsfähig sind. Bisher vermuteten Zoologen, dass Hybridisierung vor allem bei "niederen Tieren" und evolutionär jungen Arten auftritt.

Frankfurter Biologen um Privatdozent Klaus Schwenk haben nun nachgewiesen, dass in allen Tiergruppen hybridisierende Arten vorkommen.

Die Studie beruht auf einer umfangreichen Recherche in einer biologischen Literaturdatenbank, bei der alle Veröffentlichungen zu diesem Thema für den Zeitraum von 1947 bis 2007 zusammengestellt wurden. Die Forscher fanden insgesamt 21972 Publikationen über hybridisierende Tierarten, allerdings sind nicht alle Tiergruppen gleich gut untersucht.

So gibt es beispielsweise viel mehr wissenschaftliche Literatur über Säugetiere als über Spinnen, auch wenn die Zahl der beschriebenen Spinnenarten diejenige der Säugetiere weit übertrifft. Um verschiedene Tiergruppen untereinander vergleichen zu können, haben Schwenk und seine Mitarbeiter dieses systematische Datenungleichgewicht mathematisch korrigiert. Sie kamen zu dem Ergebnis, dass in allen Tiergruppen mit einem bestimmten Anteil von hybridisierenden Arten gerechnet werden kann. Hybridisierung ist also, wenngleich nicht sehr häufig, doch über das ganze Tierreich verteilt.

In freier Wildbahn sind Hybride nicht leicht aufzuspüren, denn oft sehen sich die Eltern ähnlich - obwohl es sich um verschiedene Arten handelt - und auch der Nachwuchs ist nicht immer eindeutig als Hybrid zu erkennen. Erst durch den massiven Einsatz molekulargenetischer Methoden hat sich gezeigt, dass es deutlich mehr Hybride gibt, als bisher vermutet.

Und welchen Bedeutung hat dieser Prozess in der Natur? "Hybridisierung kann die Evolution der Tiere entscheidend beeinflussen", erklärt Schwenk, "Durch das Vermischen der Genome kann es zur Ausbildung von Genotypen kommen, die unter Umständen besser an die Umweltbedingungen angepasst sind als die der beiden interagierenden Elternarten". Darüber hinaus kann eine genetische "Brücke" zwischen den Arten entstehen - manifestiert durch Hybride und Kreuzungen zwischen Hybriden und Elternarten - welche den Gen-Fluss zwischen Arten ermöglicht. Das hat man inzwischen bei den unterschiedlichsten Tierarten nachgewiesen, von Insekten über Reptilien bis zu Vögeln und Säugetieren.

Die Ergebnisse der Frankfurter Biologen, sowie die von 15 weiteren Forschergruppen, sind in einem aktuellen Sonderheft der renommierten Zeitschrift Philosophical Transaction of the Royal Society (Biological Sciences) zusammen gefaßt. Diese Sammlung von Übersichtsartikeln ist das Ergebnis einer internationalen und von der DFG geförderten Tagung an der Goethe-Universität im September 2006.
Ein Bild des Ligers finden Sie unter Wikipedia Commons http://en.wikipedia.org/wiki/Image:Bertramliger.jpg

Kurzfilme, die von der gewaltigen Größe des Hybrids zeugen, finden Sie auf youtube.

Weitere Informationen:
PD Dr. Klaus Schwenk,
Tel: 069/798-24775, k.schwenk@ bio.uni-frankfurt.de,
Abteilung Ökologie & Evolution des Institutes für Ökologie,
Evolution und Diversität, Biologie-Campus Siesmayerstraße.
Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. Vor 94 Jahren von Frankfurter Bürgern gegründet, ist sie heute eine der zehn größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht derzeit für rund 600 Millionen Euro der schönste Campus Deutschlands. Mit 45 seit 2000 eingeworbenen Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Uni den deutschen Spitzenplatz ein. In drei Forschungsrankings des CHE in Folge und in der Exzellenzinitiative zeigt sich die Goethe-UnI als eine der forschungsstärksten Hochschulen.

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.uni-frankfurt.de
http://en.wikipedia.org/wiki/Image:Bertramliger.jpg
http://journals.royalsociety.org/content/h47028374128/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie