Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lösliche Elemente aus einer neuen Ecke des Periodensystems

07.06.2016

Die Welt der Chemie ist um eine Premiere reicher: Eine Forschungsgruppe der Universität Würzburg präsentiert in „Nature Chemistry“ die ersten löslichen und stabilen Varianten eines elementaren s-Block-Elements. Normalerweise sind diese Elemente hoch reaktiv.

Viele Schüler kennen es aus dem Chemie-Unterricht: Wenn reines Natrium mit Wasser in Kontakt kommt, fängt es an zu brennen und explodiert. Denn Natrium will partout nicht in seinem elementaren Zustand bleiben und ist darum hoch reaktiv. Das gilt auch für alle anderen Metalle aus dem sogenannten s-Block der Elemente, zu dem das Natrium gehört.


Beryllium in der Mitte, flankiert von zwei stabilisierenden ringförmigen Liganden: So sieht eine weitere „Weltpremiere“ aus der Würzburger Chemie aus.

(Bild: Julia Schuster)

Eine Chemie-Forschungsgruppe der Julius-Maximilians-Universität Würzburg hat es jetzt erstmals geschafft, eines der „wilden“ Metalle aus diesem Block zu bändigen: Sie hat es in seinem elementaren Zustand in Moleküle eingebaut, ohne dass ein großer Knall oder der sofortige Zerfall die Folge ist. Das Metall ist Beryllium, stabilisiert wird es von zwei ringförmigen Liganden.

Diese Premiere aus dem Team von Professor Holger Braunschweig ist hochrangig publiziert, nämlich im Fachjournal Nature Chemistry. Das liegt zum einen daran, dass die neuen Moleküle so ungewöhnlich stabil sind. Zum anderen könnten diese Ergebnisse aus den Würzburger Chemielabors eine neue Ära für die Chemie der s-Block-Metalle einläuten.

Aussichtsreiche Kandidaten für anspruchsvolle Reaktionen

Zu den anspruchsvollsten und in der chemischen Industrie oft durchgeführten Reaktionen gehört die Übertragung von Wasserstoff und Kohlenstoffmonoxid auf organische Moleküle. Derzeit laufen solche Reaktionen ausschließlich mit Hilfe von schweren Übergangsmetallen wie Rhodium, Platin und Palladium ab. Aus Nachhaltigkeits- und Kostengründen wäre es darum nicht nur der Industrie willkommen, wenn es Alternativen aus den Reihen der Hauptgruppenelemente gäbe, die in der Erdkruste zudem reichlich vorhanden sind.

Dafür müssen diese Elemente allerdings zuerst in ihren Elementarzustand gebracht werden – ein Unterfangen, das alles andere als trivial ist. Denn elementare Hauptgruppenelemente, zu denen auch das Natrium gehört, sind überaus reaktiv. Erste Erfolge wurden hier schon bei einigen p-Block-Elementen wie Silicium, Zinn und Bor erzielt. Nun wurde auch das erste elementare s-Block-Metall, Beryllium, auf diese Weise gebändigt.

Alternativen zum toxischen Beryllium entwickeln

„Der einzige Nachteil an Beryllium ist die Toxizität“, sagt Dr. Merle Arrowsmith, Postdoc und Alexander-von-Humboldt-Stipendiatin in der Gruppe von Holger Braunschweig. Viel spannender seien darum andere s-Block-Elemente wie Magnesium und Kalzium. Sie sind auf der Erde nicht nur im Überfluss vorhanden, sondern auch biokompatibel und zudem als Katalysatoren für viele wichtige Reaktionen geeignet.

Wenn sich mit elementarem Beryllium stabile Moleküle herstellen lassen, stehen die Chancen sehr gut, dass das auch mit anderen s-Block-Metallen klappen kann. „Uns ist hier ein erster Vorstoß geglückt, die s-Block-Elemente in einen Zustand zu bringen, in dem sie Reaktionen bewältigen können, die sonst den kostbaren Schwermetallen vorbehalten sind“, sagt Chemikerin Julia Schuster, die die neuen Moleküle synthetisiert hat. Als nächstes will die Arbeitsgruppe ähnliche Methoden für weitere s-Block-Elemente entwickeln.

„Neutral zero-valent s-block complexes with strong multiple bonding“, Merle Arrowsmith, Holger Braunschweig, Mehmet Ali Celik, Theresa Dellermann, Rian D. Dewhurst, William C. Ewing, Kai Hammond, Thomas Kramer, Ivo Krummenacher, Jan Mies, Krzysztof Radacki, Julia K. Schuster. Nature Chemistry, DOI 10.1038/nchem.2542, Advance Online Publication 6. Juni 2016.

Kontakt

Prof. Dr. Holger Braunschweig, Institut für Anorganische Chemie, Universität Würzburg, T (0931) 31-85260, h.braunschweig@uni-wuerzburg.de

Weitere Informationen:

http://www-anorganik.chemie.uni-wuerzburg.de/startseite/ Zur Website der Würzburger Anorganischen Chemie

Robert Emmerich | Julius-Maximilians-Universität Würzburg

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie

Speicherdauer von Qubits für Quantencomputer weiter verbessert

09.12.2016 | Physik Astronomie