Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Live aus dem Thymus: T-Zellen auf Wanderschaft

16.02.2012
Forscher verfolgen erstmals die Entwicklung einzelner Immunzellen im lebenden Zebrafischembryo

T-Zellen sind die Schutztruppen des Immunsystems. Sie suchen im Körper nach Krankheitserregern und entarteten Zellen und setzen sie außer Gefecht. Ihre Vorläufer bilden sich im Knochenmark und wandern von dort aus in den Thymus ein. Hier reifen sie heran und differenzieren sich, um unterschiedliche Aufgaben zu erfüllen.


Vier Tage alter Zebrafischembryo mit grün angefärbten Immunzellen (Thymus-Gewebe: rot). Oben im Bild ist das Auge zu sehen.
© T. Boehm/Immunity, 16. Februar 2012

Forscher am Max-Planck-Institut für Immunbiologie und Epigenetik in Freiburg haben nun erstmals die Reifung der Immunzellen in lebenden Zebrafischembryonen live beobachtet. Die Immunzellen wandern während ihrer Entwicklung mehrfach in den Thymus ein und aus. Der Zebrafisch eignet sich damit ideal als Modellorganismus, um die dynamischen Vorgänge der Immunzellentwicklung zu untersuchen.

Der Thymus ist ein kleines, unscheinbares Organ, doch für ein funktionierendes Immunsystem ist er unverzichtbar. Denn hier entwickeln sich die T-Lymphozyten (T-Zellen), die in der körpereigenen Abwehr eine zentrale Rolle spielen. Ihre Vorläufer stammen aus dem Knochenmark und werden von chemischen Lockstoffen – sogenannten Chemokinen – in den Thymus gelockt. Hier entwickeln sie sich zu unterschiedlichen T-Zelltypen, die schließlich in den Körper entsendet werden.

Einem Forscherteam am Max-Planck-Institut für Immunbiologie und Epigenetik in Freiburg ist es nun erstmals gelungen, diese Vorgänge live zu beobachten. An lebenden Zebrafischembryonen haben sie die Entwicklung der T-Zellen in Echtzeit verfolgt, angefangen von der Bildung der Thymus-Anlage über die Einwanderung der Zellen aus dem Knochenmark bis hin zu dem Stadium, an dem die fertigen T-Zellen aus dem Thymus entlassen wurden.

Wie die Forscher herausfanden, handelt es sich dabei um ein sehr dynamisches Geschehen. Denn die Vorläuferzellen wählen bei ihrer Einwanderung in den Thymus nicht den direkten Weg. Vielmehr zeigen sie sich „unentschlossen“ und verlassen das Organ mehrmals wieder, bevor sie sich endgültig niederlassen. „Wir haben bisher keine Ahnung, warum das so ist“, sagt Thomas Boehm, Direktor am Freiburger Max-Planck-Institut und Leiter der Studie. Auch innerhalb des Thymus wandern die Zellen. „Weil wir bisher die Zellen nicht über einen längeren Zeitraum hinweg beobachten konnten, war dieses dynamische Verhalten unbekannt“, erklärt der Wissenschaftler. Die Beobachtungen zeigen auch, dass die Wanderung vom Knochenmark in den Thymus allein von Chemokinen gesteuert wird und vom Blutstrom weitgehend unabhängig ist.

Für ihre Studie verwendeten die Forscher genetisch veränderte Zebrafischembryonen. Sie eignen sich für derartige Beobachtungen besonders gut, da der Thymus in durchscheinendes Gewebe eingebettet ist und sich die Embryonen im Mikroskop lebend beobachten lassen. Die Entwicklung der T-Zellen beim Zebrafisch ist mit der der Säugetiere vergleichbar.

Die Forscher machten das Thymusgewebe mit einem Fluoreszenzfarbstoff sichtbar. Die Immunzellen markierten sie mit einem weiteren Fluoreszenzprotein, das bei Bestrahlung mit kurzwelligem Licht seine Farbe von Grün nach Rot ändert. So konnten sie nach einer Beleuchtung des Thymus beobachten, wie grüne Zellen in den Thymus einwanderten, während ihn rote Zellen wieder verließen. „Der Farbwechsel zeigt eindeutig, dass es sich dabei um dieselben Zellen handelte“, sagt Thomas Boehm.

Auch die Zellbewegungen innerhalb des Thymus wurden somit sichtbar: Wenn die Wissenschaftler kurzzeitig nur einen kleinen Bereich des Thymus bestrahlten, konnten sie anschließend beobachten, wie sich grüne und rote Zellen allmählich wieder vermischten. Zebrafisch-Mutanten mit einer Fehlfunktion des Herzens lieferten den Forschern den Beweis, dass die Vorläuferzellen nicht einfach dem Blutstrom folgen, wenn sie in den Thymus einwandern, sondern von den Chemokinen dorthin gelenkt werden.

Den Freiburger Forschern ist es damit erstmals gelungen, die Immunzellentwicklung bei einem Wirbeltier zu verfolgen. „Wie sich herausgestellt hat, ist der Zebrafisch dafür sehr gut geeignet“, sagt Thomas Boehm. „Damit können wir nun zum Beispiel direkt testen, welchen Effekt bestimmte Substanzen auf die Bildung und Reifung der T-Zellen und des Thymusgewebes haben.“ Die Studie trägt daher nicht nur dazu bei, die Funktionsweise des Immunsystems besser zu verstehen. Die Methode könnte auch helfen, Medikamente zu entwickeln, um Fehlfunktionen des Thymus zu behandeln.

Ansprechpartner

Dr. Thomas Boehm
Max-Planck-Institut für Immunbiologie und Epigenetik, Freiburg
Telefon: +49 761 5108-329
Fax: +49 761 5108-323
E-Mail: boehm@immunbio.mpg.de
Originalpublikation
Isabell Hess, Thomas Boehm
Intra-vital imaging of thymopoiesis reveals dynamic lympho-epithelial interactions

Immunity, 16. Februar 2012

Dr. Thomas Boehm | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/5036603/thymus_t-zellen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise