Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Live dabei sein: Dem Gehirn bei der Arbeit zuschauen

13.10.2016

Live dabei sein, wenn Nervenzellen im Gehirn miteinander kommunizieren, das ist der Traum vieler Neurowissenschaftler. Eine neue Methode erlaubt es nun, die Aktivierung von größeren Nervenverbänden auch im Präklinischen Modell und in Echtzeit dreidimensional zu beobachten. Forscher des Helmholtz Zentrums München und der Technischen Universität München stellen die neuen Möglichkeiten nun im Nature Fachjournal ‚Light: Science & Applications‘ vor.

Die größte Schwierigkeit beim Versuch, live ins Gehirn zu sehen, ist die Eindringtiefe. Denn ohne in die Struktur des Gehirns einzugreifen - und sie damit zumeist zu zerstören - verliert sich kurz nach der Oberfläche das Signal aufgrund der hohen Streuung im Gewebe. Daher blieben Untersuchungen am Gehirn mit optischen Methoden bis dato im wahrsten Sinne des Wortes sehr „oberflächlich“.


Das Bild zeigt die Struktur des Zebrafischgehirns im Fluoreszenzbild links und im FONT-Bild rechts, was hochaufgelöste und dreidimensionale Informationen zur Nervenaktivität (Orange) ermöglicht.

Quelle: Helmholtz Zentrum München

Ein Team um Prof. Dr. Daniel Razansky, Gruppenleiter am Institut für Biologische und Molekulare Bildgebung (IBMI) am Helmholtz Zentrum München und Professor für Molekulare Bildgebungswissenschaften an der TU München, hat nun einen Weg gefunden, dieses Problem anzugehen. Grundlage des neuen Verfahrens ist die sogenannte Optoakustische Tomographie*, die es erlaubt, auch Signale in größeren Gewebetiefen auszuwerten. Dies kombinierten die Wissenschaftler mit einer Technik, die Konzentrationsunterschiede von Kalziumionen sichtbar macht, die durch Nervenaktivität entstehen**.

„Auf diese Wiese können wir die bisherigen Grenzen der neuronalen Bildgebung deutlich überschreiten“, so Dr. Xosé Luis Deán-Ben vom IBMI, Erstautor der Studie. Das stellten die Wissenschaftler im Gehirn von erwachsen Zebrafischen (Danio rerio) unter Beweis, die mit einem stimulierenden Wirkstoff behandelt wurden. In einem entsprechenden Tomographen konnten die Wissenschaftler beobachten, wie das Kalziumsignal über die Nerven ins Gehirn weitergeleitet wurde. In einem nächsten Schritt konnten sie auch die Nervenimpulse der Fische in freier Bewegung nachverfolgen.

... mehr zu:
»Gehirn »Gesundheit »Helmholtz »Kalziumionen »TUM

Dem Lauffeuer auf der Spur

„Der größte Erfolg für uns war allerdings die Analyse von ganzen Gehirnen der erwachsenen Tiere“, sagt Studienleiter Razansky. Diese hätten immerhin eine Größe von circa 2x3x4 Millimeter (ca. 24 mm3). Aktuelle Methoden würden nur etwa einen Kubikmillimeter analysieren, so die Forscher. Gewebe vom Ausmaß eines erwachsenen Zebrafischgehirns wären entsprechend für aktuelle Mikroskopiemethoden nicht zu untersuchen. Die technische Grenze für ihre Verfahren schätzen sie selbst auf etwa 1000 Kubikmillimeter bei einer zeitlichen Auflösung von 10 Millisekunden.

Die gleichzeitige Beobachtung so vieler Nerven halten die Forscher für entscheidend bei der Suche nach Antworten zur Funktionsweise des Gehirns – sowohl im Normalzustand als auch im Krankheitsfall. „Durch unsere Methode können wir nun eine größere Zahl von Nerven gleichzeitig optisch beobachten. Stellen Sie sich diese neuronalen Netzwerke vor wie soziale Medien: bisher konnten wir mitlesen, wenn jemand (in diesem Fall eine Nervenzelle) seinem Nachbarn eine Nachricht überbringt. Nun können wir dabei zusehen, wie sich diese Nachricht wie ein Lauffeuer verbreitet“, erklärt Razansky. „Dadurch verbessert sich auch unser Verständnis dafür, wie das Gehirn arbeitet und möglicherweise ergeben sich dadurch Wege bei Fehlfunktionen therapeutisch einzugreifen“, so der Wissenschaftler weiter.

Weitere Informationen

* Diese Technologie ermöglicht eine präzise nichtinvasive 3D-Tiefendarstellung von Geweben. Dafür erwärmen schwache Laserimpulse das Zielgewebe, was zu dessen kurzzeitiger Ausdehnung führt und infolgedessen Ultraschallsignale erzeugt. Diese erfassen Wissenschaftler des Helmholtz Zentrums München dann mit einem entsprechenden Sensor und „übersetzen“ sie in dreidimensionale Bilder. Bisher nutzten sie die Technologie etwa um den Sauerstoffgehalt oder die Ausbreitung von Medikamenten im Blut zu messen. Die aktuelle Arbeit befasst sich nun mit deutlich schnelleren Prozessen – nämlich den Nervenimpulsen.

** Bei der Aktivierung von Nerven kommt es in der direkten Umgebung der Zellen zu einer Verschiebung von Kalziumionen, die durch sogenannte Ionenkanäle hinein bzw. hinaus transportiert werden. Diese Konzentrationsschwankungen können die Wissenschaftler durch sogenannte genetically encoded calcium indicators (GECIs) nachweisen. Sie ändern je nachdem ob Kalzium vorhanden ist oder nicht ihr Absorptionsspektrum, also ihre Farbe.

Hintergrund:
Für seine Forschung erhielt Razansky begehrte Mittel aus der Forschungsförderung des Europäischen Forschungsrats (ERC) und der US-Gesundheitsbehörde (NIH).
https://www.helmholtz-muenchen.de/presse-medien/pressemitteilungen/2016/pressemi...

Original-Publikation:
Deán-Ben, XL. et al. (2016): Functional optoacoustic neuro-tomography for scalable whole-brain monitoring of calcium indicators. Light: Science & Applications, doi:10.1038/lsa.2016.201
http://aap.nature-lsa.cn:8080/cms/accessory/files/AAP-lsa2016201.pdf

Das Helmholtz Zentrum München verfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.300 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 37.000 Beschäftigten angehören. http://www.helmholtz-muenchen.de

Das Institut für Biologische und Medizinische Bildgebung (IBMI) erforscht In-vivo-Bildgebungstechnologien für die Biowissenschaften. Es entwickelt Systeme, Theorien und Methoden zur Bildgebung und Bildrekonstruktion sowie Tiermodelle zur Überprüfung neuer Technologien auf der biologischen, vorklinischen und klinischen Ebene. Ziel ist es, innovative Werkzeuge für das biomedizinische Labor, zur Diagnose und dem Therapiemonitoring von humanen Erkrankungen bereit zu stellen. http://www.helmholtz-muenchen.de/ibmi

Die Technische Universität München (TUM) ist mit mehr als 500 Professorinnen und Professoren, rund 10.000 Mitarbeiterinnen und Mitarbeitern und 39.000 Studierenden eine der forschungsstärksten Technischen Universitäten Europas. Ihre Schwerpunkte sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften und Medizin, ergänzt um Wirtschafts- und Bildungswissenschaften. Die TUM handelt als unternehmerische Universität, die Talente fördert und Mehrwert für die Gesellschaft schafft. Dabei profitiert sie von starken Partnern in Wissenschaft und Wirtschaft. Weltweit ist sie mit einem Campus in Singapur sowie Verbindungsbüros in Brüssel, Kairo, Mumbai, Peking, San Francisco und São Paulo vertreten. An der TUM haben Nobelpreisträger und Erfinder wie Rudolf Diesel, Carl von Linde und Rudolf Mößbauer geforscht. 2006 und 2012 wurde sie als Exzellenzuniversität ausgezeichnet. In internationalen Rankings gehört sie regelmäßig zu den besten Universitäten Deutschlands. http://www.tum.de

Ansprechpartner für die Medien:
Abteilung Kommunikation, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - Fax: +49 89 3187 3324 - E-Mail: presse@helmholtz-muenchen.de

Fachlicher Ansprechpartner:
Prof. Dr. Daniel Razansky, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institut für Biologische und Medizinische Bildgebung, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 1587 - E-Mail: daniel.razansky@helmholtz-muenchen.de

Weitere Informationen:

http://www.helmholtz-muenchen.de/presse-medien/pressemitteilungen/2016/index.html - Weitere Meldungen des Helmholtz Zentrums München

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Weitere Berichte zu: Gehirn Gesundheit Helmholtz Kalziumionen TUM

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie