Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Live dabei sein: Dem Gehirn bei der Arbeit zuschauen

13.10.2016

Live dabei sein, wenn Nervenzellen im Gehirn miteinander kommunizieren, das ist der Traum vieler Neurowissenschaftler. Eine neue Methode erlaubt es nun, die Aktivierung von größeren Nervenverbänden auch im Präklinischen Modell und in Echtzeit dreidimensional zu beobachten. Forscher des Helmholtz Zentrums München und der Technischen Universität München stellen die neuen Möglichkeiten nun im Nature Fachjournal ‚Light: Science & Applications‘ vor.

Die größte Schwierigkeit beim Versuch, live ins Gehirn zu sehen, ist die Eindringtiefe. Denn ohne in die Struktur des Gehirns einzugreifen - und sie damit zumeist zu zerstören - verliert sich kurz nach der Oberfläche das Signal aufgrund der hohen Streuung im Gewebe. Daher blieben Untersuchungen am Gehirn mit optischen Methoden bis dato im wahrsten Sinne des Wortes sehr „oberflächlich“.


Das Bild zeigt die Struktur des Zebrafischgehirns im Fluoreszenzbild links und im FONT-Bild rechts, was hochaufgelöste und dreidimensionale Informationen zur Nervenaktivität (Orange) ermöglicht.

Quelle: Helmholtz Zentrum München

Ein Team um Prof. Dr. Daniel Razansky, Gruppenleiter am Institut für Biologische und Molekulare Bildgebung (IBMI) am Helmholtz Zentrum München und Professor für Molekulare Bildgebungswissenschaften an der TU München, hat nun einen Weg gefunden, dieses Problem anzugehen. Grundlage des neuen Verfahrens ist die sogenannte Optoakustische Tomographie*, die es erlaubt, auch Signale in größeren Gewebetiefen auszuwerten. Dies kombinierten die Wissenschaftler mit einer Technik, die Konzentrationsunterschiede von Kalziumionen sichtbar macht, die durch Nervenaktivität entstehen**.

„Auf diese Wiese können wir die bisherigen Grenzen der neuronalen Bildgebung deutlich überschreiten“, so Dr. Xosé Luis Deán-Ben vom IBMI, Erstautor der Studie. Das stellten die Wissenschaftler im Gehirn von erwachsen Zebrafischen (Danio rerio) unter Beweis, die mit einem stimulierenden Wirkstoff behandelt wurden. In einem entsprechenden Tomographen konnten die Wissenschaftler beobachten, wie das Kalziumsignal über die Nerven ins Gehirn weitergeleitet wurde. In einem nächsten Schritt konnten sie auch die Nervenimpulse der Fische in freier Bewegung nachverfolgen.

... mehr zu:
»Gehirn »Gesundheit »Helmholtz »Kalziumionen »TUM

Dem Lauffeuer auf der Spur

„Der größte Erfolg für uns war allerdings die Analyse von ganzen Gehirnen der erwachsenen Tiere“, sagt Studienleiter Razansky. Diese hätten immerhin eine Größe von circa 2x3x4 Millimeter (ca. 24 mm3). Aktuelle Methoden würden nur etwa einen Kubikmillimeter analysieren, so die Forscher. Gewebe vom Ausmaß eines erwachsenen Zebrafischgehirns wären entsprechend für aktuelle Mikroskopiemethoden nicht zu untersuchen. Die technische Grenze für ihre Verfahren schätzen sie selbst auf etwa 1000 Kubikmillimeter bei einer zeitlichen Auflösung von 10 Millisekunden.

Die gleichzeitige Beobachtung so vieler Nerven halten die Forscher für entscheidend bei der Suche nach Antworten zur Funktionsweise des Gehirns – sowohl im Normalzustand als auch im Krankheitsfall. „Durch unsere Methode können wir nun eine größere Zahl von Nerven gleichzeitig optisch beobachten. Stellen Sie sich diese neuronalen Netzwerke vor wie soziale Medien: bisher konnten wir mitlesen, wenn jemand (in diesem Fall eine Nervenzelle) seinem Nachbarn eine Nachricht überbringt. Nun können wir dabei zusehen, wie sich diese Nachricht wie ein Lauffeuer verbreitet“, erklärt Razansky. „Dadurch verbessert sich auch unser Verständnis dafür, wie das Gehirn arbeitet und möglicherweise ergeben sich dadurch Wege bei Fehlfunktionen therapeutisch einzugreifen“, so der Wissenschaftler weiter.

Weitere Informationen

* Diese Technologie ermöglicht eine präzise nichtinvasive 3D-Tiefendarstellung von Geweben. Dafür erwärmen schwache Laserimpulse das Zielgewebe, was zu dessen kurzzeitiger Ausdehnung führt und infolgedessen Ultraschallsignale erzeugt. Diese erfassen Wissenschaftler des Helmholtz Zentrums München dann mit einem entsprechenden Sensor und „übersetzen“ sie in dreidimensionale Bilder. Bisher nutzten sie die Technologie etwa um den Sauerstoffgehalt oder die Ausbreitung von Medikamenten im Blut zu messen. Die aktuelle Arbeit befasst sich nun mit deutlich schnelleren Prozessen – nämlich den Nervenimpulsen.

** Bei der Aktivierung von Nerven kommt es in der direkten Umgebung der Zellen zu einer Verschiebung von Kalziumionen, die durch sogenannte Ionenkanäle hinein bzw. hinaus transportiert werden. Diese Konzentrationsschwankungen können die Wissenschaftler durch sogenannte genetically encoded calcium indicators (GECIs) nachweisen. Sie ändern je nachdem ob Kalzium vorhanden ist oder nicht ihr Absorptionsspektrum, also ihre Farbe.

Hintergrund:
Für seine Forschung erhielt Razansky begehrte Mittel aus der Forschungsförderung des Europäischen Forschungsrats (ERC) und der US-Gesundheitsbehörde (NIH).
https://www.helmholtz-muenchen.de/presse-medien/pressemitteilungen/2016/pressemi...

Original-Publikation:
Deán-Ben, XL. et al. (2016): Functional optoacoustic neuro-tomography for scalable whole-brain monitoring of calcium indicators. Light: Science & Applications, doi:10.1038/lsa.2016.201
http://aap.nature-lsa.cn:8080/cms/accessory/files/AAP-lsa2016201.pdf

Das Helmholtz Zentrum München verfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.300 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 37.000 Beschäftigten angehören. http://www.helmholtz-muenchen.de

Das Institut für Biologische und Medizinische Bildgebung (IBMI) erforscht In-vivo-Bildgebungstechnologien für die Biowissenschaften. Es entwickelt Systeme, Theorien und Methoden zur Bildgebung und Bildrekonstruktion sowie Tiermodelle zur Überprüfung neuer Technologien auf der biologischen, vorklinischen und klinischen Ebene. Ziel ist es, innovative Werkzeuge für das biomedizinische Labor, zur Diagnose und dem Therapiemonitoring von humanen Erkrankungen bereit zu stellen. http://www.helmholtz-muenchen.de/ibmi

Die Technische Universität München (TUM) ist mit mehr als 500 Professorinnen und Professoren, rund 10.000 Mitarbeiterinnen und Mitarbeitern und 39.000 Studierenden eine der forschungsstärksten Technischen Universitäten Europas. Ihre Schwerpunkte sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften und Medizin, ergänzt um Wirtschafts- und Bildungswissenschaften. Die TUM handelt als unternehmerische Universität, die Talente fördert und Mehrwert für die Gesellschaft schafft. Dabei profitiert sie von starken Partnern in Wissenschaft und Wirtschaft. Weltweit ist sie mit einem Campus in Singapur sowie Verbindungsbüros in Brüssel, Kairo, Mumbai, Peking, San Francisco und São Paulo vertreten. An der TUM haben Nobelpreisträger und Erfinder wie Rudolf Diesel, Carl von Linde und Rudolf Mößbauer geforscht. 2006 und 2012 wurde sie als Exzellenzuniversität ausgezeichnet. In internationalen Rankings gehört sie regelmäßig zu den besten Universitäten Deutschlands. http://www.tum.de

Ansprechpartner für die Medien:
Abteilung Kommunikation, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - Fax: +49 89 3187 3324 - E-Mail: presse@helmholtz-muenchen.de

Fachlicher Ansprechpartner:
Prof. Dr. Daniel Razansky, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institut für Biologische und Medizinische Bildgebung, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 1587 - E-Mail: daniel.razansky@helmholtz-muenchen.de

Weitere Informationen:

http://www.helmholtz-muenchen.de/presse-medien/pressemitteilungen/2016/index.html - Weitere Meldungen des Helmholtz Zentrums München

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Weitere Berichte zu: Gehirn Gesundheit Helmholtz Kalziumionen TUM

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wasserbewegung als Hinweis auf den Zustand von Tumoren
19.04.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Verbesserte Stabilität von Kunststoff-Leuchtdioden
19.04.2018 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics