Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Live-Bilder von den Vorgängen im Immunsystem

19.01.2015

Tübinger Forscher entwickeln ein verbessertes Verfahren zur Markierung von T-Zellen

Die T-Zellen des Immunsystems wandern ständig durch den Körper und überprüfen ihn auf Eindringlinge und krankhaft veränderte Zellen. Passt ein Antigen auf deren Oberfläche, das über den Haupthistokompatibilitätskomplex präsentiert wird, zu den spezifischen Rezeptoren der T-Zellen wie ein Schlüssel ins zugehörige Schloss, setzt die T-Zelle eine Signalkette zur Beseitigung dieser Zellen in Gang.

Jede T-Zelle erkennt nur ein spezielles Muster auf der Zelloberfläche, doch es gibt Tausende verschiedener T-Zellen. Entgehen den T-Zellen Zielobjekte oder halten sie sie fälschlicherweise für fremd und veranlassen ihre Vernichtung, kommt es zu Erkrankungen wie Entzündungen, Krebs, Allergien oder Autoimmunkrankheiten. Umgekehrt bilden die T-Zellen daher auch einen wichtigen Ansatzpunkt für die Entwicklung von Immuntherapien gegen Krebs oder Autoimmunerkrankungen.

Um genauer zu verstehen, was bei den Immunreaktionen im Körper passiert, haben Tübinger Wissenschaftler ein neues Verfahren für die Markierung von T-Zellen an Mäusen entwickelt, das besonders aufschlussreiche Bilder im Positronenemissionstomografen (PET) ermöglicht. So können sie nicht-invasiv in der lebenden Maus die Wanderung der T-Zellen zeitlich und räumlich verfolgen.

Die Wissenschaftler vom Werner Siemens Imaging Center der Universität Tübingen unter der Leitung von Professor Bernd Pichler haben dabei mit Kollegen von den Abteilungen für Dermatologie, Pathologie und Immunologie des Universitätsklinikums Tübingen sowie dem Deutschen Konsortium für Translationale Krebsforschung zusammengearbeitet. Das neue Verfahren stellen sie in dem wissenschaftlichen Journal PNAS vor.

Bei bisherigen Methoden zur Sichtbarmachung der Wanderung der T-Zellen im Körper schränkten die angebrachten Markierungen die Zellfunktionen stark ein oder beschädigten die Zelle sogar. In ihrer neuen Studie haben die Forscher gezielt die Rezeptoren in der Außenmembran der T-Zelle mit einem Antikörper markiert, an den eine schwach radioaktive Komponente gebunden war. Die radioaktive Strahlung bildet die Grundlage für die spätere Messung im PET.

Die Forscher machten sich zunutze, dass die T-Zelle die Rezeptoren ihrer Außenmembran ständig recycelt und dabei den ganzen Komplex aus Rezeptor und Marker in ihr Inneres transportiert. „Dieser T-Zell-Rezeptor steht für die Bindung an das spezifische Antigen nicht mehr zur Verfügung. Doch diese spezifischen Rezeptoren werden zügig nachgeliefert, sodass die Immunreaktion kaum beeinträchtigt wird“, erklärt Dr. Christoph Grießinger vom Werner Siemens Imaging Center, der Erstautor der Studie.

Rund 48 Stunden haben die Forscher Zeit für Messungen im PET, danach ist das radioaktive Material weitgehend zerfallen und strahlt zu schwach. „In dieser Zeit blieb der Marker stabil in der T-Zelle“, sagt der Projektleiter Dr. Manfred Kneilling. Zudem waren die T-Zellen trotz Markierung kaum in ihren Funktionen eingeschränkt, und die PET lieferte kontrastreiche Bilder.

Die Forscher konnten live verfolgen, wie T-Zellen gezielt in das entzündete Gewebe einwandern. Mit Hilfe von vergleichenden Kontrollversuchen, bei denen die Forscher auch sehr ähnliche, aber nicht zur spezifischen T-Zelle passende Antigene zur Induktion der Entzündung einsetzten, konnten sie beweisen, dass die T-Zellen ganz spezifisch nur in das entzündliche Gewebe, welches das passende Antigen präsentiert, einwandern.

„Das Verfahren lässt sich auch auf andere Zelltypen des Immunsystems übertragen, überall dort, wo die Rezeptoren auf den Membranen häufig erneuert werden“, sagt Grießinger. Und auch die Übertragung der Methode von der Maus auf den Menschen ist bereits in der Planung. Denn die bildgebenden Verfahren gewinnen im Bereich der zellulären Immuntherapie und Stammzelltransplantationen nach Einschätzung der Forscher immer mehr an Bedeutung. Sie können zum Beispiel in neuartigen Krebstherapien angewendet werden, bei denen das Immunsystem der Patienten gezielt zur Beseitigung von Tumorzellen eingesetzt wird. „Wir könnten die therapeutisch eingesetzten Immunzellen wie zum Beispiel T-Zellen markieren und im PET verfolgen, ob sie wie geplant zu den Tumoren wandern“, beschreibt Kneilling die Überlegungen.

Originalpublikation:
Christoph M. Griessinger, Andreas Maurer, Christian Kesenheimer, Rainer Kehlbach, Gerald Reischl, Walter Ehrlichmann, Daniel Bukala, Maren Harant, Funda Cay, Jürgen Brück, Renate Nordin, Ursula Kohlhofer, Hans-Georg Rammensee, Leticia Quintanilla-Martinez, Martin Schaller, Martin Röcken, Bernd J. Pichler and Manfred Kneilling: 64Cu antibody-targeting of the T-cell recep-tor and subsequent internalization enables in vivo tracking of lymphocytes by PET. PNAS, www.pnas.org/cgi/doi/10.1073/pnas.1418391112

Kontakt:
Dr. Christoph Grießinger
Universität Tübingen
Werner Siemens Imaging Center – Abteilung für Präklinische Bildgebung und Radiopharmazie
Telefon +49 7071 29-87511
christoph.griessinger[at]med.uni-tuebingen.de

Dr. Karl Guido Rijkhoek | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-tuebingen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie