Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lipide unterstützen Proteinmaschinen

04.11.2015

Freiburger Forscher entdecken, dass der Einbau molekularer Fässer in die Membran von deren Zusammensetzung abhängt

In den Membranen der Mitochondrien – den Kraftwerken der Zelle – befinden sich verschiedene eingelagerte Proteine.


Mitochondrien bilden ein Netzwerk in der Bäckerhefe aus, das hier grün fluoreszierend angefärbt ist. Bild: Dr. Łukasz Opaliński, AG Becker

Diese Proteine führen zentrale Funktionen für die Mitochondrien aus. Ein Team um den Freiburger Biochemiker Privatdozent Dr. Thomas Becker hat herausgefunden, dass die Lipide – fettähnliche Substanzen, die das Grundgerüst biologischer Membranen bilden – Proteinmaschinen dabei unterstützen, Proteine in die Außenmembran der Mitochondrien einzubauen. Die Forscherinnen und Forscher veröffentlichten die Ergebnisse in der aktuellen Ausgabe der Fachzeitschrift „Journal of Biological Chemistry“.

Mitochondrien führen lebensnotwendige Funktionen für die Zelle aus: Sie produzieren zum Beispiel die Energie für den Zellstoffwechsel. Wenn sie nicht funktionieren, kann dies zu Erkrankungen des Nervensystems führen. Bestimmte Proteine der Außenmembran, die eine so genannte beta-Fassstruktur ausbilden, sind für die Entwicklung der Mitochondrien von entscheidender Bedeutung.

Über diese Proteine finden Transportprozesse von Proteinen und Stoffwechsel-Zwischenprodukten, so genannten Metaboliten, statt. Ribosomen im Cytosol, der Zellflüssigkeit, stellen die beta-Fassproteine her. Die Proteintranslokasen, zwei Proteinmaschinen in der Außenmembran der Mitochondrien, bringen die Fassstrukturen dort hinein.

Die Translokase, die kurz TOM-Komplex genannt wird, transportiert Proteine aus dem Cytosol in die Mitochondrien. Der so genannte SAM-Komplex baut die Proteine anschließend in die Membran ein. Während Wissenschaftlerinnen und Wissenschaftler TOM und SAM gut erforscht haben, war die Rolle der Lipide bislang nur wenig verstanden.

In Mitochondrien sind die so genannten Phospholipide, von denen Phosphatidylcholin (PC) das häufigste ist, der Hauptbaustein der Membranen. Das Team um Becker entdeckte eine bislang unbekannte Rolle von PC bei der Entstehung von beta-Fassproteinen: Die Wissenschaftler fanden heraus, dass die Funktion des SAM-Komplexes vom Gehalt an PC in der Membran abhängt. In Zusammenarbeit mit der Arbeitsgruppe von Prof. Dr. Günther Daum von der Technischen Universität Graz/Österreich analysierte das Freiburger Team Mitochondrien von Mutanten der Bäckerhefe, die einen stark verminderten Gehalt an PC aufweisen.

Max-Hinderk Schuler aus Beckers Forschungsgruppe am Institut für Biochemie und Molekularbiologie der Universität Freiburg zeigte, dass bei der veränderten Bäckerhefe der Einbau der beta-Fassproteine in die Außenmembran reduziert ist. Dies lässt sich dadurch erklären, dass die Funktion und die Stabilität des SAM-Komplexes in diesen Mutanten gestört sind.

Im Gegensatz dazu ist die Aktivität des TOM-Komplexes nicht beeinträchtigt. Damit können beta-Fassproteine zwar ungehindert den TOM-Komplex passieren, doch ihr Einbau in die Außenmembran läuft nicht mehr mit voller Geschwindigkeit ab, wenn der Gehalt an PC vermindert ist. Diese Arbeit zeigt, dass Proteinmaschinen und Lipide im Proteintransport eng verbunden sind und dass der Einbau des beta-Fassproteins in die Zielmembran von der Zusammensetzung der Membran abhängig ist.

Die Wissenschaftler erzielten die Ergebnisse in einer Kooperation zwischen dem Sonderforschungsbereich 746 „Funktionelle Spezifität durch Kopplung und Modifikation von Proteinen“, dem Exzellenzcluster BIOSS Center for Biological Signalling Studies und einer Projekteinzelförderung der Deutschen Forschungsgemeinschaft,

Originalpublikation:
Schuler, M.-H., Di Bartolomeo, F., Böttinger, L., Horvath, S.E., Wenz, L.-S., Daum, G. and Becker, T. (2015) Phosphatidylcholine affects the role of the sorting and assembly machinery in the biogenesis of mitochondrial -barrel proteins. J. Biol. Chem. 290, 26523-26532. DOI: 10.1074/jbc.M115.687921

Kontakt:
Privatdozent Dr. Thomas Becker
Institut für Biochemie und Molekularbiologie
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-5243
E-Mail: thomas.becker@biochemie.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2015/pm.2015-11-04.160

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nesseltiere steuern Bakterien fern
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Die Immunabwehr gegen Pilzinfektionen ausrichten
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften