Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lipid-Nanodisks stabilisieren fehlgefaltete Proteine für Untersuchungen

18.12.2017

Verklumpen fehlgefaltete Proteine in insulinproduzierenden Zellen der Bauchspeicheldrüse, können diese absterben. Jetzt ist es Forscherinnen und Forschern der Technischen Universität München (TUM), der Universität Michigan und des Helmholtz-Zentrums München gelungen, den Fehlfaltungsprozess genau in dem Moment zu stabilisieren, in dem er am gefährlichsten ist. Die Forscher hoffen, dass ihre Momentaufnahmen bei der Suche nach Wirkstoffen helfen, die die Fehlfaltung verhindern können.

Die Klumpen, die von fehlgefalteten Proteinen, sogenannten Plaques, verursacht werden, sind an vielen Krankheiten beteiligt: Plaques beeinträchtigen beispielsweise die Funktion von Neuronen im Gehirn von Menschen mit Demenz und Alzheimer. Die Bildung von Plaques tötet aber auch Insulin produzierende Inselzellen bei Menschen mit Typ-2-Diabetes ab.


Legt man die zehn Strukturen mit der geringsten Energie übereinander, so zeigt die Überlagerung schön, welche Struktur das hIAPP-Molekül in einer Membranumgebung bevorzugt.

Bild: Diana Rodriguez Camargo /TUM

„Im Allgemeinen ist die Toxizität für Zellen extrem schwer zu beweisen und zu charakterisieren“, sagte Ayyalusamy Ramamoorthy, Professor an der Universität von Michigan und Hans Fischer Fellow am Institute for Advanced Study der Technischen Universität München. „Auf der anderen Seite müssen wir das können, um Medikamente für eine mögliche Behandlung zu entwickeln.“

Lipid-Nanodisks stabilisieren aggregierende Proteine

Um die kritischen Proteinstrukturen zu untersuchen, verwendeten die Forscher Sushi-ähnliche Nanodisks. Sie bestehen aus Lipidschichten, die von einer Art Gürtel umgeben sind, um Modell-Proteine während des Aggregationsprozesses zu stabilisieren.

Die Wissenschaftlerinnen und Wissenschaftler wählten die Nanodisks so, dass sich die Proteine nur bis zu einem bestimmten Punkt falten können, genau bis zu dem Moment, in dem sie für die Inselzellen am gefährlichsten sind. Mithilfe von Kernspinresonanz-Spektroskopie gewann das Team dann Bilder der Proteinfaltung mit atomarer Auflösung.

„Die Nanodisks sind wie der Unterschied zwischen einem Schwimmbad und dem Ozean. Im Ozean gibt es keine Grenzen; ein Schwimmbad hat Grenzen“, sagte Ramamoorthy. „Mit dieser eingeschränkten Umgebung sind wir in der Lage, die Aggregation des Proteins zu stoppen. So können wir beobachten wie es aussieht, bevor alles zu einer Masse von Fasern verklumpt.“

Ein erster Schritt zur Entwicklung von Medikamenten

Die Fähigkeit, Proteine während des Prozesses der Amyloid-Aggregation stabil zu fixieren, erlaubt ihre Charakterisierung mit einer Vielzahl biophysikalischer Werkzeuge, einschließlich Fluoreszenz-, Massenspektrometrie, NMR und Kryo-Elektronenmikroskopie. Das Forschungsteam hofft, damit Wirkstoffverbindungen entwickeln und untersuchen zu können, mit denen sich die diesen Krankheiten zugrundeliegenden Fehlfaltungen verhindern lassen.

„Wir untersuchen jetzt Wechselwirkungen mit kleinen Molekülen, um zu sehen, ob wir den Aggregationsprozess, der Amyloide erzeugt, verhindern können“, sagte Ramamoorthy. „Diese Strukturinformationen sind sehr wichtig sowohl für das wissenschaftliche Verständnis der Pathologie von Amyloid-Erkrankungen als auch für die Entwicklung von Verbindungen zur Überwindung dieser Probleme.“

Die Studie wurde von Forschern der Technischen Universität München, der University of Michigan und des Helmholtz-Zentrums München im Rahmen des TUM-Schwerpunktthemas „Protein Misfolding and Amyloid Diseases“ durchgeführt. Prof. Ayyalusamy Ramamoorthy forschte im Rahmen der Studie als TUM-IAS Hans Fischer Senior Fellow bei Bernd Reif, Professor für Festkörper-NMR-Spektroskopie an der TUM.

Diese Arbeit wurde mit Mitteln des NIH (USA), der Helmholtz-Gemeinschaft und der Deutschen Forschungsgemeinschaft, des Exzellenzclusters "Zentrum für Integrierte Proteinforschung München" (CIPSM) und des von der Exzellenzinitiative und der Europäischen Union geförderten Institute for Advanced Study unterstützt. Das Gauss Center for Supercomputing stellte Rechenzeit im Garchinger Leibniz-Rechenzentrum zur Verfügung.

Publikation:

Stabilization and structural analysis of a membrane-associated hIAPP aggregation intermediate
Diana C. Rodriguez Camargo, Kyle J. Korshavn, Alexander Jussupow, Kolio Raltchev, David Goricanec, Markus Fleisch, Riddhiman Sarkar, Kai Xue, Michaela Aichler, Gabriele Mettenleiter, Axel Karl Walch, Carlo Camilloni, Franz Hagn, Bernd Reif, Ayyalusamy Ramamoorthy
eLife, 2017; 6:e31226 – DOI: 10.7554/eLife.31226
Link: https://elifesciences.org/articles/31226

Kontakt:

Prof. Dr. Bernd Reif
Technische Universität München
Professur für Festkörper-NMR-Spektroskopie
Lichtenbergstr 4, 85747 Garching, Germany
Tel.: +49 89 289 52615 – E-Mail: reif@tum.de
Web: http://www.ocb.ch.tum.de

Weitere Informationen:

https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/detail/article/34381/ Link zur Presseinformation

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neuer Impfstoff-Kandidat gegen Malaria erfolgreich in erster klinischer Studie untersucht
25.04.2018 | Universitätsklinikum Heidelberg

nachricht Demographie beeinflusst Brutfürsorge bei Regenpfeifern
25.04.2018 | Max-Planck-Institut für Ornithologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Impfstoff-Kandidat gegen Malaria erfolgreich in erster klinischer Studie untersucht

25.04.2018 | Biowissenschaften Chemie

Erkheimer Ökohaus-Pionier eröffnet neues Musterhaus „Heimat 4.0“

25.04.2018 | Architektur Bauwesen

Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

25.04.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics