Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lipid-Nanodisks stabilisieren fehlgefaltete Proteine für Untersuchungen

18.12.2017

Verklumpen fehlgefaltete Proteine in insulinproduzierenden Zellen der Bauchspeicheldrüse, können diese absterben. Jetzt ist es Forscherinnen und Forschern der Technischen Universität München (TUM), der Universität Michigan und des Helmholtz-Zentrums München gelungen, den Fehlfaltungsprozess genau in dem Moment zu stabilisieren, in dem er am gefährlichsten ist. Die Forscher hoffen, dass ihre Momentaufnahmen bei der Suche nach Wirkstoffen helfen, die die Fehlfaltung verhindern können.

Die Klumpen, die von fehlgefalteten Proteinen, sogenannten Plaques, verursacht werden, sind an vielen Krankheiten beteiligt: Plaques beeinträchtigen beispielsweise die Funktion von Neuronen im Gehirn von Menschen mit Demenz und Alzheimer. Die Bildung von Plaques tötet aber auch Insulin produzierende Inselzellen bei Menschen mit Typ-2-Diabetes ab.


Legt man die zehn Strukturen mit der geringsten Energie übereinander, so zeigt die Überlagerung schön, welche Struktur das hIAPP-Molekül in einer Membranumgebung bevorzugt.

Bild: Diana Rodriguez Camargo /TUM

„Im Allgemeinen ist die Toxizität für Zellen extrem schwer zu beweisen und zu charakterisieren“, sagte Ayyalusamy Ramamoorthy, Professor an der Universität von Michigan und Hans Fischer Fellow am Institute for Advanced Study der Technischen Universität München. „Auf der anderen Seite müssen wir das können, um Medikamente für eine mögliche Behandlung zu entwickeln.“

Lipid-Nanodisks stabilisieren aggregierende Proteine

Um die kritischen Proteinstrukturen zu untersuchen, verwendeten die Forscher Sushi-ähnliche Nanodisks. Sie bestehen aus Lipidschichten, die von einer Art Gürtel umgeben sind, um Modell-Proteine während des Aggregationsprozesses zu stabilisieren.

Die Wissenschaftlerinnen und Wissenschaftler wählten die Nanodisks so, dass sich die Proteine nur bis zu einem bestimmten Punkt falten können, genau bis zu dem Moment, in dem sie für die Inselzellen am gefährlichsten sind. Mithilfe von Kernspinresonanz-Spektroskopie gewann das Team dann Bilder der Proteinfaltung mit atomarer Auflösung.

„Die Nanodisks sind wie der Unterschied zwischen einem Schwimmbad und dem Ozean. Im Ozean gibt es keine Grenzen; ein Schwimmbad hat Grenzen“, sagte Ramamoorthy. „Mit dieser eingeschränkten Umgebung sind wir in der Lage, die Aggregation des Proteins zu stoppen. So können wir beobachten wie es aussieht, bevor alles zu einer Masse von Fasern verklumpt.“

Ein erster Schritt zur Entwicklung von Medikamenten

Die Fähigkeit, Proteine während des Prozesses der Amyloid-Aggregation stabil zu fixieren, erlaubt ihre Charakterisierung mit einer Vielzahl biophysikalischer Werkzeuge, einschließlich Fluoreszenz-, Massenspektrometrie, NMR und Kryo-Elektronenmikroskopie. Das Forschungsteam hofft, damit Wirkstoffverbindungen entwickeln und untersuchen zu können, mit denen sich die diesen Krankheiten zugrundeliegenden Fehlfaltungen verhindern lassen.

„Wir untersuchen jetzt Wechselwirkungen mit kleinen Molekülen, um zu sehen, ob wir den Aggregationsprozess, der Amyloide erzeugt, verhindern können“, sagte Ramamoorthy. „Diese Strukturinformationen sind sehr wichtig sowohl für das wissenschaftliche Verständnis der Pathologie von Amyloid-Erkrankungen als auch für die Entwicklung von Verbindungen zur Überwindung dieser Probleme.“

Die Studie wurde von Forschern der Technischen Universität München, der University of Michigan und des Helmholtz-Zentrums München im Rahmen des TUM-Schwerpunktthemas „Protein Misfolding and Amyloid Diseases“ durchgeführt. Prof. Ayyalusamy Ramamoorthy forschte im Rahmen der Studie als TUM-IAS Hans Fischer Senior Fellow bei Bernd Reif, Professor für Festkörper-NMR-Spektroskopie an der TUM.

Diese Arbeit wurde mit Mitteln des NIH (USA), der Helmholtz-Gemeinschaft und der Deutschen Forschungsgemeinschaft, des Exzellenzclusters "Zentrum für Integrierte Proteinforschung München" (CIPSM) und des von der Exzellenzinitiative und der Europäischen Union geförderten Institute for Advanced Study unterstützt. Das Gauss Center for Supercomputing stellte Rechenzeit im Garchinger Leibniz-Rechenzentrum zur Verfügung.

Publikation:

Stabilization and structural analysis of a membrane-associated hIAPP aggregation intermediate
Diana C. Rodriguez Camargo, Kyle J. Korshavn, Alexander Jussupow, Kolio Raltchev, David Goricanec, Markus Fleisch, Riddhiman Sarkar, Kai Xue, Michaela Aichler, Gabriele Mettenleiter, Axel Karl Walch, Carlo Camilloni, Franz Hagn, Bernd Reif, Ayyalusamy Ramamoorthy
eLife, 2017; 6:e31226 – DOI: 10.7554/eLife.31226
Link: https://elifesciences.org/articles/31226

Kontakt:

Prof. Dr. Bernd Reif
Technische Universität München
Professur für Festkörper-NMR-Spektroskopie
Lichtenbergstr 4, 85747 Garching, Germany
Tel.: +49 89 289 52615 – E-Mail: reif@tum.de
Web: http://www.ocb.ch.tum.de

Weitere Informationen:

https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/detail/article/34381/ Link zur Presseinformation

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht In Hochleistungs-Mais sind mehr Gene aktiv
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Warum es für Pflanzen gut sein kann auf Sex zu verzichten
19.01.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie