Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum die linke Hirnhälfte zur rechten passt

01.09.2009
Weit reichende Verbindungen zwischen Nervenzellen koordinieren die Entwicklung zwischen verschiedenen Hirnbereichen

Die Aktivität von Nervenzellen trägt zur Strukturbildung des Gehirns bei, so dass die Informationsverarbeitung letztlich auch durch Übung gelernt wird. Lange Zeit sind Wissenschaftler davon ausgegangen, dass eine solche aktivitätsabhängige Strukturbildung nur lokal wirkt, während die grobe Architektur des Gehirns zum Zeitpunkt der Geburt bereits angelegt ist.


Karte der Orientierungspräferenz: Nervenzellen in der Sehrinde reagieren bevorzugt auf Kantenverläufe in einer bestimmten Richtung. Zellen, die auf die gleiche Richtung reagieren, sind in dieser Darstellung jeweils mit einer Farbe eingefärbt. Bild: S. Löwel/ Universität Jena


Auch Sehen will gelernt sein: Beim Menschen bilden sich in den ersten sechs Monaten nach der Geburt wichtige Verschaltungen im Gehirn, um Seheindrücke zu verarbeiten. Bild: iStockphoto

Diese Vorstellung stellen jetzt Wissenschaftler aus Göttingen und Jena in Frage. Sie zeigen, dass weit reichende Verbindungen zwischen Nervenzellen dazu beitragen, die Entwicklung unterschiedlicher Bereiche des Gehirns und sogar der beiden Gehirnhälften aufeinander abzustimmen und dies über viele Wochen nach dem Beginn des Sehens. (PNAS, 31. August 2009)

Wissenschaftler Fred Wolf vom Max-Planck-Institut für Dynamik und Selbstorganisation und Bernstein Zentrum für Computational Neuroscience Göttingen und Siegrid Löwel von der Universität Jena haben für ihre Untersuchung Bereiche der Hirnrinde untersucht, die Informationen aus den Augen verarbeiten: die primäre Sehrinde (V1), die auf die Ermittlung von Konturen spezialisiert ist, und die sekundäre Sehrinde (V2), die eher auf größere und auch schneller bewegte Reize reagiert. In jedes dieser Gebiete werden Informationen aus der Netzhaut der Augen so auf die Sehrinde übertragen, dass benachbarte Orte auf der Netzhaut auch benachbarte Bereiche der Sehrinde aktivieren. In der Sehrinde bilden sich in Laufe des Sehenlernens so genannte Kolumnen, Gruppen benachbarter Nervenzellen, die gemeinsam einen Teilaspekt der Sehleistung erbringen. Primäre und sekundäre Sehrinde sind zwar auf unterschiedliche Aspekte der Bildverarbeitung spezialisiert, sie arbeiten jedoch eng zusammen und sind über weiter reichende Nervenverbindungen miteinander verbunden: Regionen von V1 und V2, die den gleichen Bereich des Gesichtsfeldes analysieren, sind besonders stark miteinander verknüpft.

Fred Wolf und seine Kollegen haben nun mit Hilfe komplexer Bildanalyseverfahren entdeckt, dass diese weit reichenden Verknüpfungen die Größe der Kolumnen und damit Struktur der Gehirngebiete selbst beeinflusst. "Die Größe der Kolumnen variiert stark - sowohl innerhalb der Sehrinde als auch von Individuum zu Individuum", erklärt die Jenaer Professorin Siegrid Löwel, die die Experimente durchgeführt hat. Dennoch ließen sich Regeln erkennen: Weisen in einem Tier zum Beispiel bestimmte Bereiche von V1 besonders große Kolumnen auf, so zeigen die entsprechenden Bereiche in V2, die den gleichen Bildbereich verarbeiten, auch sehr große Kolumnen. Es sind also genau die Bereiche in der Größe ähnlich, zwischen denen auch lang reichende neuronale Verknüpfungen bestehen. Darüber hinaus beobachteten die Wissenschaftler Symmetrien in der Kolumnengröße zwischen der Sehrinde in der linken und rechten Hirnhälfte - allerdings erneut nur in den Bereichen, die stark miteinander verschaltet sind.

Auch weit reichende Beziehungen müssen "gelernt" werden

Diese Korrelationen bestehen nicht von Geburt an, sondern entstehen erst in den Wochen nach der Öffnung der Augen. Nach der Geburt kann der Mensch noch nicht perfekt sehen. Diese Sinneswahrnehmung muss erst gelernt werden indem sich das Gehirn entsprechend verschaltet. "Die erste Phase des Sehenlernens dauert bei uns Menschen sechs Monate und bei Katzen etwa 18 Wochen. Es war lange Zeit nicht klar, warum diese Entwicklungsprozesse so lange dauern", sagt Fred Wolf. Offenbar wird in dieser Lernphase die Architektur ganz unterschiedlicher Hirnbereiche aufeinander abgestimmt, damit am Ende die linke Hirnhälfte zur rechten passt. "Wie in einer globalisierten Welt, in der es lokale und weitreichende Kontakte gibt und beide gleich wichtig sind, basiert auch der Informationsaustausch während der Hirnentwicklung auf einem Zusammenspiel von kurzen und weitreichenden neuronalen Verbindungen", so Wolf.

Forschungsverbund soll Grundlagen von Lernen und Gedächtnis untersuchen

Auf diese Forschungsarbeiten baut ein neuer Forschungsverbund im Rahmen der Förderinitiative "Bernstein Fokus: Neuronale Grundlagen des Lernens", der von Siegrid Löwel von der Universität Jena koordiniert wird. Das Bundesministerium für Bildung und Forschung (BMBF) bewilligte für dieses Projekt insgesamt mehr als 3 Mio €, von denen über 500.000 Euro auf das von Fred Wolf geleitete Teilprojekt am Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen entfallen. Weitere Kooperationspartner sind die Professoren Otto Witte, Knut Holthoff und Christian Hübner vom Uniklinikum in Jena. Ziel des Forschungsvorhabens ist es, besser zu verstehen, welche neuronalen Mechanismen lang reichenden Interaktionen im Gehirn zugrunde liegen und wie sie Plastizität und Restrukturierung im gesunden und kranken Gehirn beeinflussen. Der Bernstein Fokus ist Teil des vom BMBF geförderten Bernstein Netzwerks Computational Neuroscience, dem auch die beiden Göttinger Bernstein Zentren angehören.

Originalveröffentlichung:

Matthias Kaschube, Michael Schnabel, Fred Wolf, Siegrid Löwel
Interareal coordination of columnar architectures during visual cortical development

PNAS, in press

Weitere Informationen erhalten Sie von:

Prof. Dr. Fred Wolf
Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen
Tel.: +49 (0)551 5176-423
E-Mail: fred-wl@nld.ds.mpg.de
Prof. Dr. Siegrid Löwel
Institut für Allgemeine Zoologie und Tierphysiologie, Jena
Tel.: +49 (0)3641 949131
E-Mail: siegrid.loewel@uni-jena.de

Dr. Felicitas von Aretin | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

nachricht Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics