Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

LIN-Forscher entwickeln weltweit erstes Tiermodell für genetisch induzierte retrograde Amnesie

26.04.2016

Demenz, Unfälle oder traumatische Erlebnisse können bei Betroffenen einen Gedächtnisverlust verursachen. Die retrograde Amnesie, also das Löschen von Gedächtnisinhalten, ist ein bisher kaum verstandener Prozess. Bei ihren Arbeiten zur Aufklärung molekularer Mechanismen des Lernens und Gedächtnisses ist es Forschern um Dr. Dirk Montag vom Magdeburger Leibniz-Institut für Neurobiologie (LIN) nun gelungen, ein weltweit einmaliges Tiermodell mit genetisch induzierbarer retrograder Amnesie zu entwickeln. Ihre Untersuchungen haben sie in einer aktuellen Studie im renommierten Fachjournal Biological Psychiatry vorgestellt.

Das Mausmodell, das die Wissenschaftler am LIN entwickelt haben, inaktiviert ein Gen namens Neuroplastin. Dirk Montag erklärt: „Es handelt sich bei Neuroplastin um ein Gen, an dem bisher nur wenige Wissenschaftler forschen, das aber für die Plastizität des Gehirns sehr wichtig ist.


Dr. Dirk Montag untersucht die Neuroplastin-Mäuse in seinem Labor.

LIN/Reinhard Blumenstein

Neuroplastin wurde bereits in Zusammenhang mit intellektuellen Fähigkeiten und Schizophrenie-Risiko gebracht. Wir haben nun erstmals ein Tiermodell entwickelt, mit dem genetisch eine retrograde Amnesie ausgelöst werden kann. Das Erstaunliche daran ist, dass die Inaktivierung eines einzigen Genes ausreicht, um assoziative Erinnerungen der Mäuse auszulöschen.“

Die Forscher haben genetisch veränderte Mäuse hergestellt, denen Neuroplastin vollständig fehlt oder dessen Synthese erst später im Leben gezielt ausgeschaltet werden kann. Mäuse ohne Neuroplastin weisen neben Lerndefiziten auch Auffälligkeiten im psychischen Bereich und bei anderen Organfunktionen auf.

Im Fokus der neu veröffentlichten Studie stehen die speziellen Lern- und Gedächtnisdefizite, die auftreten, wenn das Neuroplastin-Gen erst im erwachsenen Tier inaktiviert wird. Diese beziehen sich insbesondere auf das assoziative Lernen. Das vielleicht bekannteste Beispiel für dieses Lernparadigma ist der Pawlow´sche Hund, der sofort an sein Futter denkt, wenn er eine Glocke hört. Für den Menschen spielt assoziatives Lernen eine herausragende Rolle und liegt den meisten Lernvorgängen zugrunde, wie zum Beispiel die Ampelfarben mit dem richtigen Verhalten zu verknüpfen: rot bedeutet stehen bleiben und grün weiterfahren.

Für die Studie trainierten die LIN-Forscher Mäuse in einer Shuttlebox darauf, die Seite zu wechseln, sobald eine Lampe leuchtet. Blieben die Tiere sitzen, erhielten sie einen leichten, unangenehmen Reiz am Fuß. Die Nager verknüpften so die unangenehme Erfahrung mit dem Licht und wurden somit auf das Lichtsignal konditioniert.

Hatten die Mäuse diesen Zusammenhang gelernt, schalteten die Forscher das Neuroplastin-Gen bei den Mäusen aus. Nach Abbau des Neuroplastin-Proteins wurde ihr Gedächtnis getestet. Die Folge: Kontrollmäuse mit Neuroplastin hatten noch ein sehr gutes Gedächtnis mit mehr als 50 Prozent richtigen Reaktionen und erreichten nach einigen Trainingseinheiten schnell wieder maximale Ergebnisse. Die Mäuse ohne Neuroplastin hatten die Assoziationsaufgaben vollkommen vergessen und waren auch nicht in der Lage diese wieder zu erlernen. Nach Neuroplastinverlust wurde also eine retrograde Amnesie assoziativer Erinnerungen festgestellt.

„Interessant ist hierbei, dass es sich ausschließlich um Aufgaben rund um das assoziative Lernen handelt, die nicht mehr funktionierten. Aufgaben zum räumlichen Erinnern und Navigationsaufgaben konnten sie weiterhin normal lösen“, so Montag. Auch nach erneuten Trainingseinheiten verbesserten sich die Leistungen der Neuroplastin-Mäuse in der Shuttlebox nicht wieder. „Wir konnten somit zeigen, dass ohne Neuroplastin kein assoziatives Lernen und kein assoziatives Gedächtnis möglich sind.“

In zukünftigen Studien wollen die Forscher das Neuroplastin-Gen nur in bestimmten Nervenzellen und Hirnregionen ausschalten, um so die entscheidenden Netzwerke noch genauer einzugrenzen: „Wir möchten wissen, welche zellulären Mechanismus bestimmen, wo welche Inhalte im Gehirn gespeichert werden“, fasst Dirk Montag zusammen.

Andererseits will er mit seinem Team erforschen, welche molekularen Zusammenhänge zwischen dem Neuroplastin-Gen und dem Gedächtnis bestehen. Diese Arbeiten könnten helfen, Medikamente für Personen mit belastenden Erinnerungen an traumatische Erlebnisse, sogenannten posttraumatischen Belastungsstörungen, zu entwickeln.

Die Studie ist online verfügbar unter: http://dx.doi.org/10.1016/j.biopsych.2016.03.2107

Das Leibniz-Institut für Neurobiologie (LIN) in Magdeburg ist ein Zentrum für Lern- und Gedächtnisforschung.

Weitere Informationen:

http://www.lin-magdeburg.de

Sophie Ehrenberg | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wissenschaftliches Neuland: Die aufregende Liaison von Zucker und Proteinen
21.09.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Überleben auf der Schneeball-Erde
21.09.2017 | Max-Planck-Institut für Biogeochemie, Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

Gewässerforscher treffen sich in Cottbus

21.09.2017 | Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Granulare Materie blitzschnell im Bild

21.09.2017 | Verfahrenstechnologie

Hochpräzise Verschaltung in der Hirnrinde

21.09.2017 | Biowissenschaften Chemie

Überleben auf der Schneeball-Erde

21.09.2017 | Biowissenschaften Chemie