Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Limnologen beobachten Algen-Mutationen in Echtzeit

07.03.2016

Durch empfindliche Analyseverfahren können selbst bei Mikroorganismen Dutzende von Genen hinsichtlich der Variabilität auf DNA-Ebene untersucht und quantifiziert werden. Durch die Auswirkung der genetischen Information auf die Erscheinung einer Zelle oder einer Kolonie/Filaments im Zuge der Genexpression können Forscher die Dimension der Mikrodiversität in Freilandpopulationen aufzeigen und das Anpassungspotential erfassen.

Cyanobakterien (phototrophe Mikroorganismen) zeigen in Gewässern durch klimatische und anthropogene Einflüsse bedingte Veränderungen an, z.B. durch das Auftreten von Algenblüten.


Algenblüte an der Gewässeroberfläche

G. Christiansen, ILIM


Forschungsgruppen-Leiter Rainer Kurmayer

ILIM

Diese kolonie-bildenden Cyanobakterien kommen in Seen und Fließgewässern häufig vor und beeinträchtigen die Wassernutzung und das Ökosystem, weil sie verschiedene Gifte bilden, allem voran das Microcystin.

Dieses leberschädigende Gift kann nach Aufnahme größerer Wassermengen bei Vieh und Mensch die Gesundheit beeinträchtigen. Forscher um Rainer Kurmayer vom Forschungsinstitut für Limnologie, Mondsee, der Universität Innsbruck haben nun die Basis dafür geschaffen, die Bildung dieser Gifte auf genetischer Ebene vorherzusagen.

Alternative zur Hochdurchsatzsequenzierung

Die Erbanlagen für die Synthese dieser Gifte unterliegen Veränderungen, die aufgrund der Vielzahl der involvierten Genorte nur schwierig in Echtzeit untersucht werden können. In einem soeben in BMC Microbiology erschienen Artikel dokumentieren Forscher der Universität Innsbruck, wie sie das durch die Isolation von Einzelfilamenten und die Verwendung sensitiver „Proof-Reading Polymerasen“ nun möglich gemacht haben.

Neben der morphologischen Analyse im Lichtmikroskop setzen sie genetische Einzelkolonie-Verfahren zur Charakterisierung der Entstehung einzelner Merkmale als auch zur quantitativen Erfassung der Expression wichtiger funktioneller Gene (z.B. Lichtschutz, Nährstoffassimilation) ein.

„Unser Einzelfilamentansatz stellt eine Alternative zur klassischen Hochdurchsatzsequenzierung dar. Bei unserer Methode werden zusätzliche Informationen eines Individuums wie die Wuchsform und verschiedene morphologische und ultrastrukturelle Merkmale gewonnen, woraus wichtige Erkenntnisse zur Ökologie und Nischendifferenzierung der Individuen abgeleitet werden können. Im Zuge des vom österreichischen Wissenschaftsfonds geförderten Projekts konnten wir nun erstmals jene Veränderungen in den Erbanlagen quantifizieren, die die Synthese von Microcystin beeinflussen“, erklärt Rainer Kurmayer.

Mutationen vorhersagen

Die beobachteten Mutationen führen entweder zur Löschung von Genorten oder stellen sogenannte springende Gene (Transposasen) dar, die anhand von kurzen Erkennungssequenzen durch Insertion in verschiedene Genorte Mutationen auslösen. Die Ergebnisse der Studie zeigen, dass diese springenden Gene nicht zufällig aktiv sind, sondern ihre Aktivität mit repetitiven DNA-Abschnitten, die als Erkennungsregion dienen, korreliert. Dadurch ist es bedingt möglich, Mutationen vorherzusagen. Die Forscher wollen die molekularen Mutationsergebnisse durch phylogenetische Analysen und multivariate statistische Auswertungen mit den vor Ort gemessenen Umweltbedingungen in Zusammenhang bringen. „Dadurch können letztlich auch jene Habitate, die durch spezifischen Umweltstress wie Nährstoffeintrag, Erwärmung und UV-Strahlung besonderen selektiven Druck auf die Bildung von Microcystin ausüben, identifiziert werden“, resümiert Rainer Kurmayer.

Fachliche Rückfragen:
Ass.-Prof. Dr. Rainer Kurmayer
Forschungsinstitut für Limnologie, Mondsee
Universität Innsbruck
E-Mail: rainer.kurmayer@uibk.ac.at

Aussendung:
Dr. Sabine Wanzenböck
Öffentlichkeitsarbeit Forschungsinstitut für Limnologie, Mondsee
Universität Innsbruck
E-Mail: sabine.wanzenboeck@uibk.ac.at

Weitere Informationen:

http://bmcmicrobiol.biomedcentral.com/articles/10.1186/s12866-016-0639-1 Qin Chen, Guntram Christiansen, Li Deng, Rainer Kurmayer in BMC Microbiology: Emergence of nontoxic mutants as revealed by single filament analysis in bloom-forming cyanobacteria of the genus Planktothrix (DOI: 10.1186/s12866-016-0639-1)
https://www.uibk.ac.at/limno/personnel/kurmayer/ Rainer Kurmayer
http://www.uibk.ac.at/limno/research/projects/mobilomics/ FWF-Projekt

Mag. Stefan Hohenwarter | Universität Innsbruck

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht UVB-Strahlung beeinflusst Verhalten von Stichlingen
13.12.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Mikroorganismen auf zwei Kontinenten studieren
13.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften