Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lichtfernbedienung für die Reparatur von Materialien

12.12.2016

Forscherteam unter Leitung der HU entwickelt intelligente Kunststoffbeschichtung, die sich durch Licht-Bestrahlung gezielt repariert

Muss ein stark beschädigter Alltagsgegenstand ausgewechselt werden, ist das zumeist umweltbelastend und teuer. Um dies in Zukunft zu vermeiden, arbeiten Forscher seit Jahren an der Entwicklung neuer Materialien, die Kratzer oder Risse reparieren können.


Durch Licht-Bestrahlung kann sich die intelligente Kunststoffbeschichtung gezielt selbst reparieren.

Bild: Stefan Hecht

Ein Team unter Leitung von Forschern der Humboldt-Universität zu Berlin (HU) hat nun erstmals Kunststoffbeschichtungen entwickelt, die mit Hilfe von Licht gezielt Beschädigungen heilen können. Die Ergebnisse ihrer Studie stellen sie in der Nature Communications vor.
 
Besonders Kunststoffbeschichtungen sind aufgrund ihrer Reparatureigenschaften stark in den Fokus der Forschung gerückt: Sie können durch Hitzeeinfluss selbstständig Schäden gleichmäßig und komplett ausbessern. Beim Erkalten erhärtet der Kunststoff und wird wieder robust. Allerdings führt diese thermische Behandlung dazu, dass das Material schließlich unbrauchbar wird.

Um dieses Problem zu umgehen, hat ein Forscherteam der HU, der Friedrich-Schiller Universität in Jena, der Berliner Bundesanstalt für Materialforschung und –prüfung sowie des Helmholtz-Zentrums Geesthacht in Teltow eine intelligente Kunststoffbeschichtung entwickelt: Diese reduziert die Belastung auf den Bereich der Beschädigung, ohne das gesamte Material zu beanspruchen.
 
„Unser Ziel war es, die unversehrten Teile einer Beschichtung vor Alterung zu schützen“, sagt der leitende Wissenschaftler Stefan Hecht, Professor am Institut für Chemie und Integrative Research Institute for the Sciences (IRIS) Adlershof der HU.

Deshalb entwickelte das Forscherteam ein Material, bei dem die thermische Selbstausbesserung nur an den Stellen stattfindet, die sie mit Licht einer bestimmten Farbe beleuchten. Licht einer anderen Wellenlänge kann diesen Vorgang rückgängig machen und das ursprüngliche Material erhalten – im intakten Zustand. „Durch diesen Stimulus haben wir eine Fernbedienung, welche die Ausbesserungsfähigkeit unseres Materials je nach Bedarf an- und ausschalten kann“, erklärt Hecht.
 
Diese Entwicklung ermöglicht zukunftsnah die Verwendung fernsteuerbarer Materialien in verschiedenen Alltagsprozessen und Produkten, wie etwa als Lacke in Anwendungen der prozessorientierten Nanofabrikation oder im 3D-Druck.

Veröffentlichung:

“Conditional repair by locally switching the thermal healing capability of dynamic covalent polymers with light”
von: Anne Fuhrmann, Robert Göstl, Robert Wendt, Julia Kötteritzsch, Martin D. Hager, Ulrich S. Schubert, Kerstin Brademann-Jock, Andreas F. Thünemann, Ulrich Nöchel, Marc Behl und Stefan Hecht
Nature Communications (2016), DOI: 10.1038/ncomms13623

Weitere Informationen:

http://www.nature.com/articles/ncomms13623
http://www.hechtlab.de
http://www.iris-adlershof.de

Ibou Diop | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics