Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Licht an, Gen ein

24.06.2011
Forscher der ETH Zürich haben ein genetisches Netzwerk gebaut, das in menschlichen Zellen wie ein Lichtschalter funktioniert. Damit gelang es ihnen, Gene mit blauem Licht "anzuknipsen" und zu regulieren.

Dieser "Gen-Lichtschalter" ermöglicht neue Therapien, die unter anderem bei Diabetes Typ 2 zum Einsatz kommen könnten. Die Forscher stellen ihre Ergebnisse in der neusten Ausgabe der Fachzeitschrift "Science" vor.

Der neuste Coup aus dem Labor von Martin Fussenegger klingt nach Science Fiction. Der Professor für Biotechnologie und Bioingenieurwissenschaften hat mit seiner Gruppe ein genetisches Netzwerk in lebenden Zellen konstruiert, mit dem sich spezifische Gene mit blauem Licht anschalten bzw. regulieren lassen. Die Forscher haben indes nicht das gesamte Netzwerk entwickelt, sondern lediglich natürliche Signalwege – einen aus dem Auge und einen aus dem Immunsystem – miteinander gekoppelt. Die Zellen werden samt funktionierendem Gen-Netzwerk unter der Haut eingesetzt und das Implantat von aussen mit blauem Licht beleuchtet. Damit können die Forscher das Ziel-Gen sehr präzise steuern.

Der "Gen-Lichtschalter", mit dem die Wissenschaftler das Netzwerk anknipsen, besteht aus Melanopsin, einem Protein, das in der Netzhaut des menschlichen Auges vorkommt und mit Vitamin A einen Komplex bildet. Trifft blaues Licht auf diesen Komplex, setzt sich die erste Signalkaskade in Gang. Diese sorgt dafür, dass sich Calcium im Inneren der Zelle ansammelt. Dieser Vorgang läuft natür-licherweise auch im Auge ab und sorgt im Gehirn für das tägliche Einstellen der inneren Uhr. Die Forscher haben ihn aber neu an einen Signalweg gekoppelt, der in der Immunregulation eine wichtige Rolle spielt.

Calcium aktiviert Enzym

Das Calcium im Zellinneren aktiviert ein Enzym, welches die Phosphatgruppe (P) vom Protein NFAT-P abspaltet. Dadurch gelangt NFAT in den Zellkern, wo es an eine künstliche Kontrollsequenz bindet und das Ziel-Gen einschaltet, wel-ches die Forscher eingebracht haben. Das Gen wird aktiv und die Zelle produziert zahlreiche Kopien eines anderen Proteins. Über die Lichtmenge und –stärke können die Forscher fein regulieren, welche Mengen dieses Proteins hergestellt werden sollen. Das Gen auszuschalten ist einfach: Licht aus, Gen aus. Denn ohne Licht wird Melanopsin nicht mehr angeregt, kein Calcium mehr in der Zelle angesammelt, und die Signalkaskade ist unterbrochen.

Aufgebaut haben die Wissenschaftler diese künstliche Signalkaskade in menschlichen Zellen, die sie – geeignet verpackt – in Mäuse implantiert haben. Das blaue Licht erreicht die Zellimplantate entweder über ein hauchdünnes Glasfaserkabel, oder, wenn das Implantat direkt unter der Haut platziert wird, indem die Tiere unter eine blaue Lampe gesetzt werden. Als Lichtquelle dienten den Forschern unter anderem kommerziell erhältliche LEDs oder eine Blaulicht-lampe, die gegen Winterdepressionen eingesetzt wird. Dieses Licht schadet der Haut nicht, da es keinen UV-Anteil enthält.

Diabetes-Therapie denkbar

Bei ihren Versuchen mit Zellkulturen und Mäusen testeten die Forscher die lichtgesteuerte Produktion eines bestimmten Hormons: GLP-1 kontrolliert die Bildung von Insulin und reguliert den Blutzuckerspiegel. Die Tests bestätigten den Ansatz der Forschenden. Das durch Licht hoch regulierte GLP-1 half Mäusen, die an Diabetes erkrankt waren, die Insulinproduktion des Organismus zu verbessern, zugeführte Glukose rasch aus dem Blut zu entfernen und das Blutzucker-Gleichgewicht im Organismus wieder herzustellen.

Die von Martin Fussenegger und seiner Gruppe entwickelte GLP-1-Gentherapie könnte somit in Zukunft die klassische Injektion von Insulin bei Diabetikern er-setzen. Fussenegger kann sich vorstellen, dass man beispielsweise Patienten mit Diabetes Typ 2 ambulant ein Implantat unter die Haut setzt und die entspre-chende Hautstelle mit einem schwarzen Pflaster, das LED-Leuchten enthält, gegen das Tageslicht abschirmt. Bei Bedarf, etwa nach einer Mahlzeit, schaltet der Patient mittels Knopfdruck die LED-Lämpchen an und bestrahlt das Implan-tat ein paar Minuten lang, um die Bildung von GLP-1 anzuregen. Sobald genug davon im Körper zirkuliert, schaltet der Patient die Lämpchen wieder aus. «Das ist noch Science Fiction», betont der ETH-Professor. Es dauere sicherlich noch längere Zeit, bis ein Produkt dieser Art auf dem Markt erhältlich sein werde.

Original: Ye H, Daoud-El Baba M, Peng RW & Fussenegger M. A Synthetic Optogenetic Transcription Device Enhances Blood-Glucose Homeostasis in Mice. Science online Publication 24th june 2011, DOI: 10.1126/science.1203535

Claudia Naegeli | ETH Zürich
Weitere Informationen:
http://www.ethz.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher finden Hinweise auf verknotete Chromosomen im Erbgut
20.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Aus der Moosfabrik
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise