Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Licht an, Gen ein

24.06.2011
Forscher der ETH Zürich haben ein genetisches Netzwerk gebaut, das in menschlichen Zellen wie ein Lichtschalter funktioniert. Damit gelang es ihnen, Gene mit blauem Licht "anzuknipsen" und zu regulieren.

Dieser "Gen-Lichtschalter" ermöglicht neue Therapien, die unter anderem bei Diabetes Typ 2 zum Einsatz kommen könnten. Die Forscher stellen ihre Ergebnisse in der neusten Ausgabe der Fachzeitschrift "Science" vor.

Der neuste Coup aus dem Labor von Martin Fussenegger klingt nach Science Fiction. Der Professor für Biotechnologie und Bioingenieurwissenschaften hat mit seiner Gruppe ein genetisches Netzwerk in lebenden Zellen konstruiert, mit dem sich spezifische Gene mit blauem Licht anschalten bzw. regulieren lassen. Die Forscher haben indes nicht das gesamte Netzwerk entwickelt, sondern lediglich natürliche Signalwege – einen aus dem Auge und einen aus dem Immunsystem – miteinander gekoppelt. Die Zellen werden samt funktionierendem Gen-Netzwerk unter der Haut eingesetzt und das Implantat von aussen mit blauem Licht beleuchtet. Damit können die Forscher das Ziel-Gen sehr präzise steuern.

Der "Gen-Lichtschalter", mit dem die Wissenschaftler das Netzwerk anknipsen, besteht aus Melanopsin, einem Protein, das in der Netzhaut des menschlichen Auges vorkommt und mit Vitamin A einen Komplex bildet. Trifft blaues Licht auf diesen Komplex, setzt sich die erste Signalkaskade in Gang. Diese sorgt dafür, dass sich Calcium im Inneren der Zelle ansammelt. Dieser Vorgang läuft natür-licherweise auch im Auge ab und sorgt im Gehirn für das tägliche Einstellen der inneren Uhr. Die Forscher haben ihn aber neu an einen Signalweg gekoppelt, der in der Immunregulation eine wichtige Rolle spielt.

Calcium aktiviert Enzym

Das Calcium im Zellinneren aktiviert ein Enzym, welches die Phosphatgruppe (P) vom Protein NFAT-P abspaltet. Dadurch gelangt NFAT in den Zellkern, wo es an eine künstliche Kontrollsequenz bindet und das Ziel-Gen einschaltet, wel-ches die Forscher eingebracht haben. Das Gen wird aktiv und die Zelle produziert zahlreiche Kopien eines anderen Proteins. Über die Lichtmenge und –stärke können die Forscher fein regulieren, welche Mengen dieses Proteins hergestellt werden sollen. Das Gen auszuschalten ist einfach: Licht aus, Gen aus. Denn ohne Licht wird Melanopsin nicht mehr angeregt, kein Calcium mehr in der Zelle angesammelt, und die Signalkaskade ist unterbrochen.

Aufgebaut haben die Wissenschaftler diese künstliche Signalkaskade in menschlichen Zellen, die sie – geeignet verpackt – in Mäuse implantiert haben. Das blaue Licht erreicht die Zellimplantate entweder über ein hauchdünnes Glasfaserkabel, oder, wenn das Implantat direkt unter der Haut platziert wird, indem die Tiere unter eine blaue Lampe gesetzt werden. Als Lichtquelle dienten den Forschern unter anderem kommerziell erhältliche LEDs oder eine Blaulicht-lampe, die gegen Winterdepressionen eingesetzt wird. Dieses Licht schadet der Haut nicht, da es keinen UV-Anteil enthält.

Diabetes-Therapie denkbar

Bei ihren Versuchen mit Zellkulturen und Mäusen testeten die Forscher die lichtgesteuerte Produktion eines bestimmten Hormons: GLP-1 kontrolliert die Bildung von Insulin und reguliert den Blutzuckerspiegel. Die Tests bestätigten den Ansatz der Forschenden. Das durch Licht hoch regulierte GLP-1 half Mäusen, die an Diabetes erkrankt waren, die Insulinproduktion des Organismus zu verbessern, zugeführte Glukose rasch aus dem Blut zu entfernen und das Blutzucker-Gleichgewicht im Organismus wieder herzustellen.

Die von Martin Fussenegger und seiner Gruppe entwickelte GLP-1-Gentherapie könnte somit in Zukunft die klassische Injektion von Insulin bei Diabetikern er-setzen. Fussenegger kann sich vorstellen, dass man beispielsweise Patienten mit Diabetes Typ 2 ambulant ein Implantat unter die Haut setzt und die entspre-chende Hautstelle mit einem schwarzen Pflaster, das LED-Leuchten enthält, gegen das Tageslicht abschirmt. Bei Bedarf, etwa nach einer Mahlzeit, schaltet der Patient mittels Knopfdruck die LED-Lämpchen an und bestrahlt das Implan-tat ein paar Minuten lang, um die Bildung von GLP-1 anzuregen. Sobald genug davon im Körper zirkuliert, schaltet der Patient die Lämpchen wieder aus. «Das ist noch Science Fiction», betont der ETH-Professor. Es dauere sicherlich noch längere Zeit, bis ein Produkt dieser Art auf dem Markt erhältlich sein werde.

Original: Ye H, Daoud-El Baba M, Peng RW & Fussenegger M. A Synthetic Optogenetic Transcription Device Enhances Blood-Glucose Homeostasis in Mice. Science online Publication 24th june 2011, DOI: 10.1126/science.1203535

Claudia Naegeli | ETH Zürich
Weitere Informationen:
http://www.ethz.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Licht zur Herstellung energiereicher Chemikalien nutzen
22.05.2018 | Friedrich-Schiller-Universität Jena

nachricht Junger Embryo verspeist gefährliche Zelle
22.05.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics