Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leuchtsignale aus der lebenden Zelle

29.01.2016

In der aktuellen Ausgabe der Fachzeitschrift Nature Communications berichten Forscher der Goethe-Universität und des MIT, Cambridge (USA), über ein Verfahren, mit dem sie fluoreszierende Proteinmarker unter Druck und fein dosiert in lebende Zellen einschleusen können. Das Verfahren liefert zeitlich und räumlich hoch aufgelöste Bilder und lässt sich mit anderen Markierungsmethoden kombinieren.

Bestimmte Proteine in der Zelle aufzuspüren, gleicht der Suche nach einer Nadel im Heuhaufen. Um Proteine orten und ihre Funktion in der lebenden Zelle entschlüsseln zu können, versuchen Forscher, sie mit fluoreszierenden Molekülen zu markieren. Doch diese lassen sich oft nicht in genügender Anzahl einschleusen.


Mit Hilfe des Schlüssel-Schloss-Prinzips lässt sich selektiv das Kernhüllenprotein Lamin A mit der fluoreszenzmarkierten Sonde trisNTA (grün) anfärben. Simultan können in der gleichen Zelle durch orthogonale Markierungsmethoden weitere Proteine visualisiert werden (Histon2B in mangenta; Lysosomen in blau; Mikrotubuli in rot).

Eine Forschergruppe der Goethe Universität fand jetzt in Kooperation mit amerikanischen Kollegen eine Lösung für dieses Problem. In der aktuellen Ausgabe der Fachzeitschrift Nature Communications berichten sie über ein Verfahren, mit dem sie chemische Sonden unter Druck fein dosiert in lebende Zellen einschleusen können.

„Obwohl immer mehr Proteinmarkierungsmethoden synthetische Fluoreszenzfarbstoffe nutzen, leiden diese oft unter Problemen wie Zellpermeabilität und geringer Markierungseffizienz. Auch kann man sie nur eingeschränkt mit anderen Proteinmarkierungsmethoden verwenden“, erklärt Dr. Ralph Wieneke vom Institut für Biochemie der Goethe-Universität.

Die Arbeitsgruppe um Wieneke und Prof. Robert Tampé hat schon vor längerer Zeit einen Marker entwickelt, der ausgewählte Proteine mit einer Präzision von wenigen Nanometern in der Zelle lokalisiert. Es handelt sich um ein hochspezifisches Schlüssel-Schloss-Paar, bestehend aus dem kleinen synthetischen Molekül trisNTA und einem genetisch codierten His-tag.

Um diesen Proteinmarker in die Zellen zu schleusen, verwendeten die Frankfurter Forscher zusammen mit Kollegen des Massachussetts Institute of Technology (MIT), Cambridge, USA, ein Verfahren, bei dem der Marker zusammen mit den Zellen in Lösung schwimmt. Diese wird dann durch verengte Kanäle gepresst (cell squeezing). Unter dem Druck nehmen die Zellen die fluoreszierenden Sonden mit einer Effizienz von über 80 Prozent auf. Das Hochdurchsatz-Verfahren erlaubt es, eine Million Zellen pro Sekunde durch die künstliche Kapillare zu pressen.

Da der Marker in hohem Maße spezifisch an die gewünschten Proteine bindet und sich seine Konzentration in der Zelle präzise regulieren ließ, konnten die Forscher hochauflösende mikroskopische Bilder von lebenden Zellen aufnehmen. Zudem konnten sie den Marker erst an sein Zielmolekül binden lassen, wenn es durch Licht aktiviert wurde. So lassen sich zelluläre Prozesse nicht nur räumlich, sondern auch zeitlich präzise verfolgen.

Die Forscher konnten ihre Markierungsmethode in lebenden Zellen sogar mit anderen Proteinmarkierungsmethoden kombinieren. So wird es möglich, gleichzeitig mehrere Proteine in Echtzeit zu beobachten. „Wir konnten eine Vielzahl an fluoreszenzmarkierten trisNTAs mittels cell squeezing in Zellen einschleusen. Damit erweitern sich die Möglichkeiten der konventionellen und der hochauflösenden Lebendzellmikroskopie ungemein“, erklärt Prof. Robert Tampé. Zukünftig wird man dynamische Prozesse in lebenden Zellen mit höchster Auslösung in Zeit und Raum verfolgen können.

Publikation: Alina Kollmannsperger, Armon Sharei, Anika Raulf, Mike Heilemann, Robert Langer, Klavs F. Jensen, Ralph Wieneke & Robert Tampé: Live-cell protein labelling with nanometre precision by cell squeezing, in: Nature Communications, 7:10372,
DOI: 10.1038/ncomms10372 www.nature.com/naturecommunications 

Informationen: Dr. Ralph Wieneke, Institut für Biochemie, Campus Riedberg, Tel.: (069) 798-29477, wieneke@em.uni-frankfurt.de.

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 gegründet mit rein privaten Mitteln von freiheitlich orientierten Frankfurter Bürgerinnen und Bürgern fühlt sie sich als Bürgeruniversität bis heute dem Motto "Wissenschaft für die Gesellschaft" in Forschung und Lehre verpflichtet. Viele der Frauen und Männer der ersten Stunde waren jüdische Stifter. In den letzten 100 Jahren hat die Goethe-Universität Pionierleistungen erbracht auf den Feldern der Sozial-, Gesellschafts- und Wirtschaftswissenschaften, Chemie, Quantenphysik, Hirnforschung und Arbeitsrecht. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Heute ist sie eine der zehn drittmittelstärksten und drei größten Universitäten Deutschlands mit drei Exzellenzclustern in Medizin, Lebenswissenschaften sowie Geisteswissenschaften."

Herausgeber: Die Präsidentin
Abteilung Marketing und Kommunikation,
60629 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation Theodor-W.-Adorno-Platz 1, 60323 Frankfurt am Main Telefon (069) 798 – 1 24 98, Telefax (069) 798 – 763 12531, E-Mail hardy@pvw.uni-frankfurt.de
Internet: www.uni-frankfurt.de 

Dr. Anne Hardy | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht In Hochleistungs-Mais sind mehr Gene aktiv
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Warum es für Pflanzen gut sein kann auf Sex zu verzichten
19.01.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie