Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leuchtkugeln auf Wanderschaft

13.01.2011
Nanopartikel-Testkit zeigt, wie sich verschieden große Nanopartikel in Tumorgewebe verteilen

Nanopartikel spielen eine wesentliche Rolle bei der Entwicklung zukünftiger diagnostischer und therapeutischer Methoden für Tumorerkrankungen, beispielsweise als Transporter für Wirkstoffe oder als Kontrastmittel.

Aufnahme und Verteilung von Nanopartikeln im Tumorgewebe hängen dabei stark von der Partikelgröße ab. Um dies systematisch untersuchen zu können, haben Wissenschaftler vom Massachusetts Institute of Technology (MIT, Cambrigde, USA) und der Harvard Medical School (Boston, USA) jetzt einen Satz fluoreszierender Nanopartikel verschiedener Durchmesser zwischen 10 und 150 nm hergestellt. Wie das Team um Moungi G. Bawendi und Daniel G. Nocera in der Zeitschrift Angewandte Chemie berichtet, konnten sie damit die räumliche und zeitliche Verteilung verschieden großer Partikel simultan in Tumoren von Mäusen verfolgen.

Damit Nanopartikel-basierte biomedizinische Methoden klappen, müssen die Nanopartikel die optimale Größe haben. Zu Studienzwecken wäre es daher wünschenswert, das Verhalten verschieden großer Partikel im selben Tumor in vivo simultan zu verfolgen. Dazu werden chemisch vergleichbare Partikel in verschiedenen Größen benötigt, die innerhalb ihrer Gruppe einheitlich groß und gleich geformt sind. Die Partikel müssen sich zudem simultan nachweisen und unterscheiden lassen. Sie müssen dabei biokompatibel sein, dürfen nicht miteinander verklumpen oder Proteine adsorbieren. Eine große Herausforderung, die nun gemeistert wurde.

Die Forscher haben einen Satz Nanopartikel in verschiedenen Größen entwickelt, deren Detektion über fluoreszierende Quantenpunkte erfolgt. Quantenpunkte sind Halbleiter-Strukturen an der Schwelle zwischen makroskopischen Festkörpern und der quantenmechanischen Nanowelt. Über die Wahl ihrer Größe lassen sich gezielt Quantenpunkte herstellen, die bei verschiedenen Wellenlängen fluoreszieren - und sich auf diese Weise simultan detektieren und unterscheiden lassen.

Um Nanopartikel unterschiedlicher Größen herzustellen, beschichteten die Wissenschaftler Cadmiumselenid/Cadmiumsulfid-Quantenpunkte mit polymeren Liganden bzw. mit Siliciumdioxid und Polyethylenglycol. Partikel oberhalb 100 nm Durchmesser erzielten sie, indem sie die Quantenpunkte an vorgefertigte Siliciumdioxid-Partikel knüpften und ebenfalls mit Polyethylenglycol beschichteten. Für jede Größenklasse wurden Quantenpunkte gewählt, die Licht einer anderen Wellenlänge abstrahlen.

Die Forscher injizierten krebskranken Mäusen intravenös eine Mischung aus Partikeln mit 12, 60 und 125 nm Durchmesser. Fluoreszenzmikroskopisch wurde das Eindringen ins Tumorgewebe in vivo verfolgt. Während die 12-nm-Partikel leicht von den Blutgefäßen ins Gewebe übertraten und sich dort rasch verteilten, gelangten die 60-nm-Partikel zwar durch die Wand der Adern, blieben dann aber in einem Abstand von 10 µm um die Gefäßwand und drangen nicht weiter ins Gewebe ein. Die 125-nm-Partikel überwanden die Gefäßwände dagegen so gut wie gar nicht.

Angewandte Chemie: Presseinfo 41/2010

Autor: Moungi G. Bawendi, Daniel G. Nocera, Massachusetts Institute of Technology, Cambridge (USA), http://web.mit.edu/chemistry/www/faculty/nocera.html

Angewandte Chemie 2010, 122, No. 46, 8831-8834, Permalink to the article: http://dx.doi.org/10.1002/ange.201003142

Dr. Renate Hoer | GDCh
Weitere Informationen:
http://presse.angewandte.de
http://web.mit.edu/chemistry/www/faculty/nocera.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einzelne Proteine bei der Arbeit beobachten
08.12.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Herz-Bindegewebe unter Strom
08.12.2016 | Universitäts-Herzzentrum Freiburg - Bad Krozingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops