Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leuchtende Farben für kleinste Details

22.03.2012
Max-Planck-Innovation und Abberior unterzeichnen Lizenzvertrag zur Entwicklung von Fluoreszenzfarbstoffen für die hochauflösende Mikroskopie

Für gestochen scharfe Bilder aus dem Nanokosmos sind nicht nur High-Tech-Mikroskope erforderlich. Erst mit speziellen Fluoreszenzfarbstoffen können Wissenschaftler die winzigen Details überhaupt sichtbar machen. Über die Entwicklung solcher Farbstoffe hat nun die Technologietransfer-Organisation der Max-Planck-Gesellschaft, Max-Planck-Innovation, mit der Firma Abberior GmbH einen Lizenzvertrag geschlossen.


Herkömmliche (links) und hochauflösende (rechts) Fluoreszenzmikroskopie mit CAGE 500. Der Farbstoff wird erst durch UV-Licht fluoreszent.
© MPI f. biophysikalische Chemie

Mithilfe neuer, ausgeklügelter Mikroskopie-Techniken dringen Wissenschaftler in immer kleinere Welten vor. Damit Wissenschaftler Vorgänge in Zellen sichtbar machen können, müssen sie die daran beteiligten Strukturen und Moleküle mit Farbstoffen markieren. Solche Fluoreszenzfarbstoffe werden durch Licht zum Leuchten angeregt und geben Licht einer charakteristischen Wellenlänge ab. Der Lizenzvertrag zwischen Abberior und Max-Planck-Innovation soll die Neuentwicklung solcher Fluoreszenzfarbstoffe vorantreiben. „Der Vertrag mit Max-Planck-Innovation deckt einen Großteil unserer Farbstoff-Neuentwicklungen mit den Schutzrechten der Max-Planck-Gesellschaft ab und sichert uns die Exklusivität dieser Farbstoffe zu“, erklärt Gerald Donnert, Geschäftsführer der Abberior GmbH.

Abberior ist eine Ausgründung des Max-Planck-Instituts für biophysikalische Chemie in Göttingen und der führende Hersteller von kommerziell erhältlichen Fluoreszenzfarbstoffen für neue Mikroskopie-Techniken. Bei der Entwicklung neuer Fluoreszenzfarben setzt das Unternehmen auf das Know-How der vier Firmengründer Stefan W. Hell, Vladimir Belov, Lars Kastrup und Gerald Donnert. Als Pioniere auf dem Gebiet der hochauflösenden Mikroskopie haben sie bereits zahlreiche Erfindungen zum Patent angemeldet. So hat Stefan Hell, Direktor am Max-Planck-Institut für biophysikalische Chemie, die sogenannte STED-Mikroskopie entwickelt (Stimulated Emission Depletion). Damit konnten er und sein Team das Auflösungsvermögen in der Lichtmikroskopie bis auf 15 Nanometer steigern – bis vor wenigen Jahren galten noch 200 Nanometer als das theoretische Auflösungslimit. Durch die enge Verbindung zur Grundlagenforschung können Neuentwicklungen schnell in der Praxis getestet werden.

Mittlerweile gibt es neben der STED-Methode auch andere Mikroskopie-Konzepte, mit denen Forscher sehr hohe Auflösungen erreichen. Die verwendeten Farbstoffe müssen dabei die speziellen Anforderungen der einzelnen Techniken genau erfüllen. Bei allen hochauflösenden Methoden verwirklichen die Markermoleküle einen Schalter zwischen ‚an‘ und ‚aus‘, der für die jeweilige Methode charakteristisch ist. Dabei müssen zwei oder mehr Farbstoffe aufeinander abgestimmt sein, so dass mehrfarbige, hochauflösende Aufnahmen möglich werden, mit denen verschiedene Strukturen markiert und sichtbar werden.

In den nächsten Jahren dürfte die Nachfrage nach solch speziellen Fluoreszenzfarbstoffen weiter steigen: „Langfristig kann die hochauflösende Mikroskopie die herkömmliche Fluoreszenzmikroskopie in vielen Bereichen ersetzen“, so Donnert. Die neuen Mikroskopie-Techniken haben in den letzten Jahren Lebenswissenschaften revolutioniert. In Zukunft könnten die hochauflösenden Techniken auch in der medizinischen Diagnostik Einzug halten. Da sie den Forschern ganz neue Einblicke in zelluläre Vorgänge gewähren, werden sie dazu beitragen, Krankheiten wesentlich besser zu erkennen und zu behandeln.

Ansprechpartner
Markus Berninger
Max-Planck-Innovation GmbH München
Telefon: +49 89 290919-30
Fax: +49 89 290919-98
E-Mail: Markus.Berninger@Max-Planck-Innovation.de
Dr. Gerald Donnert
Geschäftsführer
Abberior GmbH
Telefon: +49 551 3072-4180
E-Mail: g.donnert@abberior.com

Markus Berninger | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/5555971/fluoreszenzfarbstoffe_mikroskopie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics