Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leuchtende Bakterienproteine zum Nachweis von Chemikalien im Wasser

12.06.2013
Medikamentenreste haben im Wasser nichts zu suchen, Spurenmetalle in Prozesswässern der Recyclingindustrie sind dagegen wertvoll.

Wissenschaftler am Helmholtz-Zentrum Dresden-Rossendorf (HZDR) haben ein einfaches Farbsensor-Prinzip entwickelt, mit dem man beide Stoffe sowie viele weitere Substanzen leicht nachweisen kann.


Das am HZDR entwickelte Farbsensor-Prinzip beruht auf einem roten und einem grünen Fluoreszenz-Farbstoff. Wäre ein gesuchter Stoff in einer Wasserprobe vorhanden, würde der Sensor grün leuchten; eine rote Färbung würde dagegen anzeigen, dass die Substanz nicht vorkommt.
Bild: HZDR/ Sander Münster 3dkosmos

Die Idee: Leuchtet die untersuchte Probe rot, ist das Wasser ‚sauber‘; färbt es sich dagegen grün, sind die gesuchten Stoffe enthalten. Die Forscher veröffentlichten ihr Konzept kürzlich in der Fachzeitschrift Sensors and Actuators B: Chemical (DOI: 10.1016/j.snb.2013.05.051).

„Arzneimittelreststoffe werden immer problematischer für die Umwelt. Kläranlagen bauen sie nicht vollständig ab. Das Problem wird zunehmen, betrachtet man z.B. den steigenden Anteil alter Menschen in unserer Gesellschaft und den damit wachsenden Medikamentenverbrauch“, sagt die Leiterin der Arbeitsgruppe Biotechnologie am HZDR, Dr. Katrin Pollmann.

„Grundsätzlich eignet sich unser Farbsensor-Prinzip zum Aufspüren aller möglichen Substanzen“, so Pollmann weiter. Gewinnbringend eingesetzt werden könnte es auch beim Recycling strategischer Metalle, einem wichtigen Forschungsthema am Helmholtz-Institut Freiberg für Ressourcentechnologie (HIF) des HZDR, zu dem die Gruppe um Pollmann gehört. In der Recyclingindustrie fallen Prozesswässer an, die Metalle enthalten und die man nutzen kann.

Das Sensorprinzip beruht auf einem roten und einem grünen Fluoreszenz-Farbstoff. Wäre ein gesuchter Stoff in einer Wasserprobe vorhanden, würde der Sensor grün leuchten; eine rote Färbung würde dagegen anzeigen, dass die Substanz nicht vorkommt. Wie kommt es zu dem Farbunterschied? „Die Farbmoleküle befinden sich auf einer nanostrukturierten Oberfläche, die aus bakteriellen Proteinen besteht. Die Farbstoffe liegen so dicht aneinander, dass ein Energieübertrag von den grünen auf die roten Farbstoffe stattfindet, wenn man sie mit Licht einer bestimmten Wellenlänge bestrahlt, z.B. aus einem Laser.

Die Probe leuchtet dann rot. Der Energietransfer findet aber nur statt, wenn die Wasserprobe ‚sauber‘ ist. Lagern sich dagegen fremde Substanzen, z.B. die gesuchten Medikamente oder Schadstoffe, zwischen den Farbmolekülen an spezifischen Bindungsstellen an, wird der Transfer unterbrochen und nur die grünen Farbstoffe strahlen“, erklärt Ulrike Weinert. Sie hat sich in ihrer Doktorarbeit mit der Anbindung der Farbmoleküle auf der Nano-Oberfläche beschäftigt.

Das Verbundprojekt („AptaSens“) wurde gefördert durch das Bundesministerium für Bildung und Forschung. Die nanostrukturierte Oberfläche ist ein wichtiger Teil des Projekts. Sie wird aus den Hüllproteinen von Bakterien gewonnen, die die Forscher im Labor heranzüchten. „Die Proteine bilden regelmäßige Gitterstrukturen auf der Nano-Ebene. Sie eignen sich hervorragend, um funktionelle Gruppen und andere Moleküle gleichmäßig anzuordnen“, so Weinert.
Ein wichtiger weiterer Baustein des Sensorprinzips sind die Bindungsstellen auf der Nano-Oberfläche für die nachzuweisenden Substanzen. Dafür werden sogenannte Aptamere eingesetzt. Das sind kurze, einzelsträngige DNA-Oligonukleotide; die DNA-Abschnitte können so gestaltet werden, dass sie in der Lage sind, die unterschiedlichsten Substanzen, wie eben Medikamente oder Schadstoffe, spezifisch zu binden. Sie sind das Spezialgebiet von Dr. Beate Strehlitz vom Helmholtz-Zentrum für Umweltforschung (UFZ) in Leipzig. Im Rahmen des AptaSens-Projektes wurde in ihrer Arbeitsgruppe ein solcher Rezeptor für das Antibiotikum Kanamycin entwickelt, das z.B. zur Behandlung bakterieller Infektionen des Auges, wie Bindehautentzündung, oder in der Tiermedizin eingesetzt wird.

Was nun noch aussteht, ist, den Kanamycin-Rezeptor mit den Farbstoffen zu kombinieren und damit das Farbsensor-Prinzip an einer Beispielsubstanz zu testen. „Ab dann ist es nur noch ein kleiner Schritt bis zur Entwicklung eines vollständigen Farbsensors“, sagt Katrin Pollmann. Dafür müssen die Forscher die einzelnen Komponenten – also Bakterienproteine, Farbstoffe und Aptamer – zu einem Sensorchip integrieren. Sie haben auch bereits mit geeigneten Trägermaterialien, z.B. Glas oder Siliziumdioxid, experimentiert. „Der Sensorchip könnte daumennagelklein sein. Man könnte ihn vor Ort mit einer Wasserprobe, die man untersuchen möchte, benetzen. Dazu gehört dann noch eine Laserlichtquelle, die den Chip aktiviert, und ein Detektor, der die Farbänderung misst“, so Pollmann weiter. Nun bewerben sich die Wissenschaftler um ein Anschlussprojekt.

Publikation:
U. Weinert, K. Pollmann, J. Raff: „Fluorescence Resonance Energy Transfer by S-layer coupled fluorescence dyes”, in Sensors and Actuators B: Chemical (2013), DOI: 10.1016/j.snb.2013.05.051
Weitere Informationen

Ulrike Weinert | Dr. Katrin Pollmann
Helmholtz-Institut Freiberg für Ressourcentechnologie am HZDR
u.weinert@hzdr.de | k.pollmann@hzdr.de
Tel.: 0351 260 2012 | 0351 260 2946

Pressekontakt

Anja Weigl
Helmholtz-Zentrum Dresden-Rossendorf
Abt. Kommunikation und Medien
Tel. 0351 260 2452
a.weigl@hzdr.de
www.hzdr.de

Helmholtz-Zentrum Dresden-Rossendorf
Bautzner Landstr. 400
01328 Dresden
Das Helmholtz-Institut Freiberg für Ressourcentechnologie (HIF) hat das Ziel, innovative Technologien für die Wirtschaft zu entwickeln, um mineralische und metallhaltige Rohstoffe effizienter bereitzustellen und zu nutzen sowie umweltfreundlich zu recyceln. Es wurde am 29. August 2011 gegründet, gehört zum Helmholtz-Zentrum Dresden-Rossendorf und wird in enger Kooperation mit der TU Bergakademie Freiberg aufgebaut.

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Gesundheit, Energie und Materie und betreibt dazu fünf Großgeräte mit teils einmaligen Experimentiermöglichkeiten, die auch externen Nutzern zur Verfügung stehen. Es hat vier Standorte in Dresden, Leipzig, Freiberg und Grenoble und beschäftigt rund 1.000 Mitarbeiter, davon ca. 450 Wissenschaftler inklusive 160 Doktoranden.

An der TU Bergakademie Freiberg in Sachsen, der deutschen Ressourcenuniversität, wird entlang der Wertschöpfungskette in den vier Themengebieten Geo, Material, Energie und Umwelt für eine nachhaltige Stoff- und Energiewirtschaft gelehrt und geforscht.

Dr. Christine Bohnet | Helmholtz-Zentrum
Weitere Informationen:
http://www.hzdr.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der erste Blick auf ein einzelnes Protein
18.01.2017 | Max-Planck-Institut für Festkörperforschung, Stuttgart

nachricht Unterschiedliche Rekombinationsraten halten besonders egoistische Gene im Zaum
18.01.2017 | Max-Planck-Institut für Evolutionsbiologie, Plön

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der erste Blick auf ein einzelnes Protein

18.01.2017 | Biowissenschaften Chemie

Das menschliche Hirn wächst länger und funktionsspezifischer als gedacht

18.01.2017 | Biowissenschaften Chemie

Zur Sicherheit: Rettungsautos unterbrechen Radio

18.01.2017 | Verkehr Logistik