Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lernen ohne äußeres Feedback

04.04.2016

Subjektive Zuversicht hat Einfluss auf Lernerfolg

Lernprozesse werden durch Belohnung von außen beeinflusst und verstärkt. Wie Forscher der Charité – Universitätsmedizin Berlin nun zeigen, kann das Gehirn aber auch selbst ein eigenes Feedback erzeugen.


Probanden lösen Wahrnehmungsaufgaben: Die eigene Zuversicht über die Orientierung eines visuellen Reizes aktiviert hierbei eine Gehirnregion im limbischen System.

Gehirnregion im limbischen System. Copyright Charité

Wie der Mechanismus dieser selbstgenerierten Rückkopplungssignale funktioniert, beschreiben die Neurowissenschaftler in der aktuellen Ausgabe der Fachzeitschrift eLife*. Lernprozesse mit und ohne Feedback weisen demnach deutliche neurobiologische Parallelen auf.

Lernen ist ein wesentlicher Bestandteil unseres Lebens. Nur manchmal erhalten wir dabei äußeres Feedback über unsere Leistungen. Wie Lernprozesse auch ohne Feedback zustande kommen, haben nun Forscher um Prof. Dr. Philipp Sterzer von der AG Visuelle Wahrnehmung an der Klinik für Psychiatrie und Psychotherapie der Charité anhand von Signalen im Gehirn untersucht.

Mithilfe funktioneller Magnetresonanztomographie konnten die Wissenschaftler die neuronale Aktivität im Gehirn gesunder Probanden messen, während diese schwierige Wahrnehmungsaufgaben zu lösen hatten. Statt Feedback über ihre Leistung zu erhalten, sollten die Probanden angeben, wie zuversichtlich sie bezüglich der Wahrnehmung eines optischen Reizes und dessen genauen Eigenschaften waren.

„Unsere Experimente zeigen, dass die Hirnaktivität beim Lernen aus Zuversicht deutliche Parallelen zum Lernen mit äußerem Feedback aufweist“, sagt Dr. Matthias Guggenmos, Erstautor der Studie. Frühere Untersuchungen zu äußerem Belohnungsfeedback haben gezeigt, dass die Hirnaktivität von Probanden zu Beginn einer Aufgabe die eigene Vorhersage über die erwartete Belohnung wiederspiegelt.

Nach dem Erhalt der Belohnung weist sie dabei einen sogenannten Vorhersagefehler aus, wenn die Belohnung beispielsweise höher ausfällt, als erwartet. Tatsächlich konnten die Forscher in der aktuellen Studie ein identisches Muster beim Lernen ohne Feedback ausmachen. In diesem Fall gilt allerdings das Vorhersagesignal im Gehirn dem Maß der eigenen Zuversicht. Kommt es zu einem Vorhersagefehler, gilt die Überraschung der Diskrepanz zur tatsächlich erfahrenen Zuversicht.

„Diese umfassende Parallele wirft die Möglichkeit auf, dass subjektive Zuversichtlichkeit, ähnlich wie Belohnung, ein generelles Lernsignal ist und auch bei anderen Formen des Lernens ohne Feedback eine wichtige Rolle spielt, beispielsweise bei Schulaufgaben“, so Dr. Guggenmos.

Ausgangspunkt der aktuellen Untersuchung war die Hypothese, dass das Gehirn in der Lage sein könnte, sich selbst Feedbacksignale zu erzeugen, wenn keine Signale von außen verfügbar sind. „Unsere Annahme war, dass die subjektive Zuversichtlichkeit bezüglich der eigenen Wahrnehmung ein Maß für selbsterzeugtes Feedback sein könnte“, erklärt Dr. Guggenmos.

„Die allgemeine Idee ist hierbei, dass das Gehirn Wahrnehmungsprozesse verstärkt, die mit hoher Zuversichtlichkeit verbunden sind, und solche vermeidet, die zu niedriger Zuversichtlichkeit führen“, ergänzt der Wissenschaftler. Tatsächlich konnte das Forscherteam die Antworten der Versuchsteilnehmer durch ein mathematisches Modell erklären, bei dem äußeres Feedback durch subjektive Zuversichtlichkeit ersetzt wurde.

Weiterhin zeigte sich über Probanden hinweg ein systematischer Zusammenhang zwischen der Stärke des gemessenen neuronalen Zuversichtlichkeitssignals und dem tatsächlichen Lernerfolg in der Wahrnehmungsaufgabe. Dieser Zusammenhang liefert damit ein Indiz dafür, dass das Zuversichtlichkeitssignal tatsächlich einen messbaren Einfluss auf Lernen durch Wahrnehmung nimmt.

*Matthias Guggenmos, Gregor Wilbertz, Martin N. Hebart, Philipp Sterzer. Mesolimbic confidence signals guide perceptual learning in the absence of external feedback. Elife. 2016 Mar 29. doi: 10.7554/eLife.13388. http://elifesciences.org/content/5/e13388v1

Kontakt:
Dr. Matthias Guggenmos
Klinik für Psychiatrie und Psychotherapie
Charité – Universitätsmedizin Berlin
t: +49 30 450 517 131
matthias.guggenmos[at]charite.de

Weitere Informationen:

http://psy-ccm.charite.de/forschung/bildgebung/ag_visuelle_wahrnehmung/ - AG Visuelle Wahrnehmung

Manuela Zingl | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Gehirn Hirnaktivität Lernprozesse Psychotherapie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik