Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lernen nach einem Durchlauf

09.11.2009
Wie die Reihenfolge von Ereignissen gelernt werden kann

Wenn wir von der Küche durch den Flur ins Wohnzimmer gehen, dauert das ein paar Sekunden. Dass wir uns anschließend daran erinnern, den Weg zurückgelegt zu haben, ist gar nicht so selbstverständlich - denn um sich Ereignisse einzuprägen, müssen sie im Gehirn innerhalb von Millisekunden wieder abgespult werden.

Bisherige Untersuchungen aus verschiedenen Laboratorien haben gezeigt, dass das Gehirn hierzu einen Mechanismus namens "Phasenverschiebung" (phase precession) nutzen könnte. Diese Phasenverschiebung haben nun eine Gruppe von Forschern um den Neurowissenschaftler Richard Kempter, Humboldt-Universität zu Berlin und Bernstein Zentrum für Computational Neuroscience Berlin, in Zusammenarbeit mit dem Labor von György Buzsáki an der Rutgers University in Newark, New Jersey, USA, näher untersucht.

Dazu haben sie Hirnaktivität von Ratten analysiert, die einen bestimmten Weg zwischen zwei Futterstellen zurücklegten - also quasi von der Küche durch den Flur in eine andere Küche. Im Gegensatz zu früheren Untersuchungen, in denen Daten aus verschiedenen Durchläufen zusammengefasst wurden, haben die Wissenschaftler nun jeden Durchlauf separat betrachtet.

"Das Gehirn muss in der Lage sein, Informationen auch während eines einzigen Durchlaufs zu verarbeiten und zu speichern. Mit unserem Ansatz konnten wir zeigen, dass die Phasenverschiebung schon bei einzelnen Durchläufen die Komprimierung und Speicherung von Abläufen im Gehirn erklären kann und wesentlich präziser arbeitet, als bisher angenommen", erklärt Kempter.

Zur Orientierung dienen bei Mensch und Tier so genannte "Ortszellen" im Gehirn. Sie sind immer dann aktiv, wenn man sich in einem bestimmten Bereich des Raums aufhält. Bereiche verschiedener Ortszellen können sich dabei durchaus überlappen. Durchquert eine Ratte im Versuch die Ortsfelder A und B, sind beispielsweise erst die Ortszelle A, dann die Ortszellen A und B und schließlich die Ortszelle B aktiv.

Diese Abfolge spielt sich in einem Zeitrahmen von Sekunden ab. Für Nervenzellen sind ein paar Sekunden jedoch nahezu eine Ewigkeit, da viele zelluläre Prozesse auf viel schnelleren Zeitskalen ablaufen. Um Verbindungen zwischen Zellen zu verstärken, müssen beide Zellen innerhalb von Millisekunden aktiv sein. Wenn eine Zelle A wenige Millisekunden vor einer Zelle B einen Impuls aussendet - man sagt, sie "feuert" - kann sich das Gehirn die Reihenfolge "AB" einprägen.

Eine solche Komprimierung der Ereignisse von Sekunden auf Millisekunden wird im Gehirn durch eine Phasenverschiebung codiert. Ortszellen folgen einem bestimmten Rhythmus im Gehirn und feuern im Takt. Aber nicht genau - während die Ratte den Bereich von Ortszelle A durchquert, verschiebt sich die Phase der Ortszelle A gegenüber dem allgemeinen Rhythmus nach vorne. Wenn die Ratte von A über AB nach B läuft, feuern die A-Zellen innerhalb eines Zyklus kurz vor den B-Zellen. So kann das Ereignis "AB" gelernt werden.

In der Arbeitsgruppe von Richard Kempter hat Robert Schmidt nun die Phasenverschiebung genauer untersucht und dabei Versuchsdurchläufe einzeln betrachtet. Wie die Wissenschaftler zeigten, ist der Zusammenhang zwischen Phasenverschiebung und zurückgelegter Strecke in einzelnen Durchläufen sehr präzise: die Phasenverschiebung gibt sehr genau an, wo sich die Ratte im Ortsfeld befindet. Der Zusammenhang zwischen Phasenverschiebung und Strecke ändert sich jedoch beträchtlich von Durchlauf zu Durchlauf. Wenn man also mehrere Versuchsdurchläufe gemeinsam betrachtet, ist die Phasenverschiebung weniger genau. "Auch wenn der Weg für die Ratte immer der gleiche ist, ist die Aktivität der Nervenzellen bei jedem Durchlauf unterschiedlich", sagt Schmidt. Durch ihren Ansatz, die Daten aus einzelnen Durchläufen getrennt zu analysieren, konnten die Wissenschaftler also zeigen, dass der Phasenverschiebungs-Code noch besser funktioniert, als bisher angenommen. Darüber hinaus stellten die Forscher fest, dass eine Phasenverschiebung oft nur einen halben Zyklus beträgt. Diese Beobachtung erklärt, warum die Reihenfolge der Ereignisse beim komprimierten Abspulen im Gehirn erhalten bleibt und die A-Zelle immer kurz vor der B-Zelle feuert. Bei einer größeren Phasenverschiebung würden die Ereignisse aus zwei aufeinander folgenden Zyklen durcheinander geraten.

Originalpublikation:
Robert Schmidt, Kamran Diba, Christian Leibold, Dietmar Schmitz, György Buzsáki,
and Richard Kempter (2009). Single-Trial Phase Precession in the Hippocampus. Journal of Neuroscience, 29:13232-13241. doi:10.1523/JNEUROSCI.2270-09.2009
Kontaktinformation:
Richard Kempter und Robert Schmidt
Institut für Biologie - Theoretische Biologie
Humboldt-Universität zu Berlin
Tel: 030-2093-8925/6
Email: r.kempter(at)biologie.hu-berlin.de und
r.schmidt(at)biologie.hu-berlin.de

Dr. Katrin Weigmann | idw
Weitere Informationen:
http://www.nncn.de/
http://www.bccn-berlin.de/
http://itb.biologie.hu-berlin.de/Research/faculty/kempter_group/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscherteam der Universität Bremen untersucht Korallenbleiche
24.04.2017 | Universität Bremen

nachricht Feinste organische Partikel in der Atmosphäre sind häufiger glasartig als flüssige Öltröpfchen
21.04.2017 | Max-Planck-Institut für Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Phoenix Contact übernimmt Spezialisten für Netzleittechnik

24.04.2017 | Unternehmensmeldung

Phoenix Contact beteiligt sich an Berliner Start-up Unternehmen für Energiemanagement

24.04.2017 | Unternehmensmeldung

Phoenix Contact übernimmt Spezialisten für industrielle Kommunikationstechnik

24.04.2017 | Unternehmensmeldung