Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lernen nach einem Durchlauf

09.11.2009
Wie die Reihenfolge von Ereignissen gelernt werden kann

Wenn wir von der Küche durch den Flur ins Wohnzimmer gehen, dauert das ein paar Sekunden. Dass wir uns anschließend daran erinnern, den Weg zurückgelegt zu haben, ist gar nicht so selbstverständlich - denn um sich Ereignisse einzuprägen, müssen sie im Gehirn innerhalb von Millisekunden wieder abgespult werden.

Bisherige Untersuchungen aus verschiedenen Laboratorien haben gezeigt, dass das Gehirn hierzu einen Mechanismus namens "Phasenverschiebung" (phase precession) nutzen könnte. Diese Phasenverschiebung haben nun eine Gruppe von Forschern um den Neurowissenschaftler Richard Kempter, Humboldt-Universität zu Berlin und Bernstein Zentrum für Computational Neuroscience Berlin, in Zusammenarbeit mit dem Labor von György Buzsáki an der Rutgers University in Newark, New Jersey, USA, näher untersucht.

Dazu haben sie Hirnaktivität von Ratten analysiert, die einen bestimmten Weg zwischen zwei Futterstellen zurücklegten - also quasi von der Küche durch den Flur in eine andere Küche. Im Gegensatz zu früheren Untersuchungen, in denen Daten aus verschiedenen Durchläufen zusammengefasst wurden, haben die Wissenschaftler nun jeden Durchlauf separat betrachtet.

"Das Gehirn muss in der Lage sein, Informationen auch während eines einzigen Durchlaufs zu verarbeiten und zu speichern. Mit unserem Ansatz konnten wir zeigen, dass die Phasenverschiebung schon bei einzelnen Durchläufen die Komprimierung und Speicherung von Abläufen im Gehirn erklären kann und wesentlich präziser arbeitet, als bisher angenommen", erklärt Kempter.

Zur Orientierung dienen bei Mensch und Tier so genannte "Ortszellen" im Gehirn. Sie sind immer dann aktiv, wenn man sich in einem bestimmten Bereich des Raums aufhält. Bereiche verschiedener Ortszellen können sich dabei durchaus überlappen. Durchquert eine Ratte im Versuch die Ortsfelder A und B, sind beispielsweise erst die Ortszelle A, dann die Ortszellen A und B und schließlich die Ortszelle B aktiv.

Diese Abfolge spielt sich in einem Zeitrahmen von Sekunden ab. Für Nervenzellen sind ein paar Sekunden jedoch nahezu eine Ewigkeit, da viele zelluläre Prozesse auf viel schnelleren Zeitskalen ablaufen. Um Verbindungen zwischen Zellen zu verstärken, müssen beide Zellen innerhalb von Millisekunden aktiv sein. Wenn eine Zelle A wenige Millisekunden vor einer Zelle B einen Impuls aussendet - man sagt, sie "feuert" - kann sich das Gehirn die Reihenfolge "AB" einprägen.

Eine solche Komprimierung der Ereignisse von Sekunden auf Millisekunden wird im Gehirn durch eine Phasenverschiebung codiert. Ortszellen folgen einem bestimmten Rhythmus im Gehirn und feuern im Takt. Aber nicht genau - während die Ratte den Bereich von Ortszelle A durchquert, verschiebt sich die Phase der Ortszelle A gegenüber dem allgemeinen Rhythmus nach vorne. Wenn die Ratte von A über AB nach B läuft, feuern die A-Zellen innerhalb eines Zyklus kurz vor den B-Zellen. So kann das Ereignis "AB" gelernt werden.

In der Arbeitsgruppe von Richard Kempter hat Robert Schmidt nun die Phasenverschiebung genauer untersucht und dabei Versuchsdurchläufe einzeln betrachtet. Wie die Wissenschaftler zeigten, ist der Zusammenhang zwischen Phasenverschiebung und zurückgelegter Strecke in einzelnen Durchläufen sehr präzise: die Phasenverschiebung gibt sehr genau an, wo sich die Ratte im Ortsfeld befindet. Der Zusammenhang zwischen Phasenverschiebung und Strecke ändert sich jedoch beträchtlich von Durchlauf zu Durchlauf. Wenn man also mehrere Versuchsdurchläufe gemeinsam betrachtet, ist die Phasenverschiebung weniger genau. "Auch wenn der Weg für die Ratte immer der gleiche ist, ist die Aktivität der Nervenzellen bei jedem Durchlauf unterschiedlich", sagt Schmidt. Durch ihren Ansatz, die Daten aus einzelnen Durchläufen getrennt zu analysieren, konnten die Wissenschaftler also zeigen, dass der Phasenverschiebungs-Code noch besser funktioniert, als bisher angenommen. Darüber hinaus stellten die Forscher fest, dass eine Phasenverschiebung oft nur einen halben Zyklus beträgt. Diese Beobachtung erklärt, warum die Reihenfolge der Ereignisse beim komprimierten Abspulen im Gehirn erhalten bleibt und die A-Zelle immer kurz vor der B-Zelle feuert. Bei einer größeren Phasenverschiebung würden die Ereignisse aus zwei aufeinander folgenden Zyklen durcheinander geraten.

Originalpublikation:
Robert Schmidt, Kamran Diba, Christian Leibold, Dietmar Schmitz, György Buzsáki,
and Richard Kempter (2009). Single-Trial Phase Precession in the Hippocampus. Journal of Neuroscience, 29:13232-13241. doi:10.1523/JNEUROSCI.2270-09.2009
Kontaktinformation:
Richard Kempter und Robert Schmidt
Institut für Biologie - Theoretische Biologie
Humboldt-Universität zu Berlin
Tel: 030-2093-8925/6
Email: r.kempter(at)biologie.hu-berlin.de und
r.schmidt(at)biologie.hu-berlin.de

Dr. Katrin Weigmann | idw
Weitere Informationen:
http://www.nncn.de/
http://www.bccn-berlin.de/
http://itb.biologie.hu-berlin.de/Research/faculty/kempter_group/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik