Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lernen braucht rhythmische Aktivität von Nervenzellen

19.09.2012
Gedächtnisbildende Signalübertragung im Hippokampus aufgeklärt

Der Hippokampus ist eine wichtige Gehirnstruktur für das Lernen. Wissenschaftler des Max-Planck-Instituts für Psychiatrie in München haben herausgefunden, wie er elektrische Nervenzellsignale über eine Eingangs- und Ausgangskontrolle filtert und so Lern- und Erinnerungsprozesse steuert.


Schematische Darstellung des 3-Synapsen-Schaltkreises im Hippokampus (rot) und der Position der Stimulationselektrode (Stim). Die Aktivität der Nervenzellen wurde mittels Fluoreszenzfarbstoffen, die auf Spannungsänderungen reagieren, und einem Fluoreszenzmikroskop (VSDI) gemessen. Mikroelektroden in der CA1- und CA3-Region registrieren die elektrischen Signale.
© MPI für Psychiatrie


Echtzeitdarstellung einer Aktivitätswelle durch den Hippokampus. Die Aktivitätswelle entsteht durch Stimulation der Eingangsregion mit einer Mikroelektrode (schwarzer Pfeil) und wird mit spannungsabhängigen Farbstoffen aufgezeichnet. Wärmere Farben repräsentieren stärkere Nervenzellaktivität.
© MPI für Psychiatrie

Für eine wirkungsvolle Signalweiterleitung benötigt es demnach sogenannte theta-frequente Impulse der Hirnrinde. Diese Impulse mit einer Frequenz von drei bis acht Hertz lösen elektrische Aktivitätswellen durch den Hippokampus aus. Impulse anderer Frequenz rufen keine bzw. eine wesentlich schwächere Übertragung hervor. Für das Lernen notwendige Signalübertragung in andere Hirnareale durch Langzeitpotenzierung (LTP) entsteht wiederum nur, wenn die Aktivitätswellen für eine bestimmte Zeit andauern. Die Wissenschaftler haben sogar eine Erklärung dafür parat, warum wir nach einer Tasse Kaffee oder in einer akuten Stresssituation kurzzeitig geistig leistungsfähiger sind: In ihren Experimenten verstärkten Koffein und das Stresshormon Kortikosteron den Aktivitätsfluss.

Wenn wir etwas lernen und uns an etwas erinnern, müssen wir uns auf die entsprechende Information konzentrieren und sie immer wieder aufnehmen. Warum das so ist, zeigen nun elektrophysiologische Experimente am Tiermodell der Maus. Wissenschaftler der Arbeitsgruppe von Matthias Eder haben dazu die Übertragung elektrischer Impulse zwischen Nervenzellen im Hippokampus des Gehirns von Mäusen gemessen. Unter dem Fluoreszenzmikroskop konnten sie in Echtzeit beobachten, wie die Nervenzellen Signale weiterleiten.

Jens Stepan, Nachwuchswissenschaftler am Münchner Max-Planck-Institut, stimulierte die Eingangsregion zum Hippokampus mit elektrischen Impulsen unterschiedlicher Frequenz. Dabei gelang ihm erstmalig der Nachweis, dass es spezifisch theta-frequente Stimulationen mit einer Frequenz sind, die eine effektive Impulsweiterleitung über die hippocampale CA3/CA1-Region erzeugt. Ein Befund mit besonderer Bedeutung, da aus früheren Studien bekannt ist, dass theta-rhythmische Nervenzellaktivität im entorhinalen Kortex immer dann auftritt, wenn konzentriert neue Informationen aufgenommen werden. Die Forscher zeigen mit diesem Ergebnis, dass der Hippokampus höchst selektiv auf die entorhinalen Signale reagiert. Er ist offensichtlich in der Lage, wichtige, also eventuell erinnerungswürdige, von unwichtiger, also am besten gar nicht erst wahrzunehmender Information zu unterscheiden und physiologisch gezielt zu verarbeiten.

Eine mögliche Reaktion ist die Entstehung der so genannten Langzeitpotenzierung (LTP, long-term potentiation) der Signalübertragung an CA3-CA1 Synapsen, welche für das Lernen und die langfristige Gedächtnisbildung häufig unentbehrlich ist. Die aktuelle Studie dokumentiert, dass dieses CA1-LTP nur dann auftritt, wenn die Aktivitätswellen durch den Hippokampus für eine bestimmte Zeit andauern. Auf unser Lernverhalten übersetzt folgt daraus, um uns z.B. ein Bild einzuprägen, sollten wir es konzentriert für einige Zeit betrachten, denn nur dann produzieren wir für eine ausreichend lange Zeit die beschriebenen Aktivitätswellen und speichern das Bild auch in unserem Gehirn ab.

Matthias Eder und seinen Kollegen gelang es mit dieser Studie eine bisherige Wissenslücke zu schließen. „Die von uns hier untersuchte neuronale Kommunikation über die drei hippocampalen Nervenzellverschaltungen liefert uns ein neues Verständnis vom Lernen im lebenden Organismus. Wir zeigen erstmalig, dass die Langzeitpotenzierung von Frequenz und Dauer eingehender sensorischer Signale in den Hippokampus abhängt“, sagt Matthias Eder.

Ansprechpartner

Dr. Barbara Meyer
Max-Planck-Institut für Psychiatrie, München
Telefon: +49 89 30622-616
Fax: +49 89 30622-348
Email: bmeyer@­mpipsykl.mpg.de
Originalveröffentlichung
Jens Stepan, Julien Dine, Thomas Fenzl, Stephanie A. Polta, Gregor von Wolff, Carsten T. Wotjak and Matthias Eder
Entorhinal theta-frequency input to the dentate gyrus trisynaptically evokes hippocampal CA1 LTP

Frontiers in Neural Circuits 2012, Band 6, Artikel 64, Seite 1-13

Dr. Barbara Meyer | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/6354106/lernen_nervenzellen-hippokampus

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterien aus dem Blut «ziehen»
07.12.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht HIV: Spur führt ins Recycling-System der Zelle
07.12.2016 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie