Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lernen braucht rhythmische Aktivität von Nervenzellen

19.09.2012
Gedächtnisbildende Signalübertragung im Hippokampus aufgeklärt

Der Hippokampus ist eine wichtige Gehirnstruktur für das Lernen. Wissenschaftler des Max-Planck-Instituts für Psychiatrie in München haben herausgefunden, wie er elektrische Nervenzellsignale über eine Eingangs- und Ausgangskontrolle filtert und so Lern- und Erinnerungsprozesse steuert.


Schematische Darstellung des 3-Synapsen-Schaltkreises im Hippokampus (rot) und der Position der Stimulationselektrode (Stim). Die Aktivität der Nervenzellen wurde mittels Fluoreszenzfarbstoffen, die auf Spannungsänderungen reagieren, und einem Fluoreszenzmikroskop (VSDI) gemessen. Mikroelektroden in der CA1- und CA3-Region registrieren die elektrischen Signale.
© MPI für Psychiatrie


Echtzeitdarstellung einer Aktivitätswelle durch den Hippokampus. Die Aktivitätswelle entsteht durch Stimulation der Eingangsregion mit einer Mikroelektrode (schwarzer Pfeil) und wird mit spannungsabhängigen Farbstoffen aufgezeichnet. Wärmere Farben repräsentieren stärkere Nervenzellaktivität.
© MPI für Psychiatrie

Für eine wirkungsvolle Signalweiterleitung benötigt es demnach sogenannte theta-frequente Impulse der Hirnrinde. Diese Impulse mit einer Frequenz von drei bis acht Hertz lösen elektrische Aktivitätswellen durch den Hippokampus aus. Impulse anderer Frequenz rufen keine bzw. eine wesentlich schwächere Übertragung hervor. Für das Lernen notwendige Signalübertragung in andere Hirnareale durch Langzeitpotenzierung (LTP) entsteht wiederum nur, wenn die Aktivitätswellen für eine bestimmte Zeit andauern. Die Wissenschaftler haben sogar eine Erklärung dafür parat, warum wir nach einer Tasse Kaffee oder in einer akuten Stresssituation kurzzeitig geistig leistungsfähiger sind: In ihren Experimenten verstärkten Koffein und das Stresshormon Kortikosteron den Aktivitätsfluss.

Wenn wir etwas lernen und uns an etwas erinnern, müssen wir uns auf die entsprechende Information konzentrieren und sie immer wieder aufnehmen. Warum das so ist, zeigen nun elektrophysiologische Experimente am Tiermodell der Maus. Wissenschaftler der Arbeitsgruppe von Matthias Eder haben dazu die Übertragung elektrischer Impulse zwischen Nervenzellen im Hippokampus des Gehirns von Mäusen gemessen. Unter dem Fluoreszenzmikroskop konnten sie in Echtzeit beobachten, wie die Nervenzellen Signale weiterleiten.

Jens Stepan, Nachwuchswissenschaftler am Münchner Max-Planck-Institut, stimulierte die Eingangsregion zum Hippokampus mit elektrischen Impulsen unterschiedlicher Frequenz. Dabei gelang ihm erstmalig der Nachweis, dass es spezifisch theta-frequente Stimulationen mit einer Frequenz sind, die eine effektive Impulsweiterleitung über die hippocampale CA3/CA1-Region erzeugt. Ein Befund mit besonderer Bedeutung, da aus früheren Studien bekannt ist, dass theta-rhythmische Nervenzellaktivität im entorhinalen Kortex immer dann auftritt, wenn konzentriert neue Informationen aufgenommen werden. Die Forscher zeigen mit diesem Ergebnis, dass der Hippokampus höchst selektiv auf die entorhinalen Signale reagiert. Er ist offensichtlich in der Lage, wichtige, also eventuell erinnerungswürdige, von unwichtiger, also am besten gar nicht erst wahrzunehmender Information zu unterscheiden und physiologisch gezielt zu verarbeiten.

Eine mögliche Reaktion ist die Entstehung der so genannten Langzeitpotenzierung (LTP, long-term potentiation) der Signalübertragung an CA3-CA1 Synapsen, welche für das Lernen und die langfristige Gedächtnisbildung häufig unentbehrlich ist. Die aktuelle Studie dokumentiert, dass dieses CA1-LTP nur dann auftritt, wenn die Aktivitätswellen durch den Hippokampus für eine bestimmte Zeit andauern. Auf unser Lernverhalten übersetzt folgt daraus, um uns z.B. ein Bild einzuprägen, sollten wir es konzentriert für einige Zeit betrachten, denn nur dann produzieren wir für eine ausreichend lange Zeit die beschriebenen Aktivitätswellen und speichern das Bild auch in unserem Gehirn ab.

Matthias Eder und seinen Kollegen gelang es mit dieser Studie eine bisherige Wissenslücke zu schließen. „Die von uns hier untersuchte neuronale Kommunikation über die drei hippocampalen Nervenzellverschaltungen liefert uns ein neues Verständnis vom Lernen im lebenden Organismus. Wir zeigen erstmalig, dass die Langzeitpotenzierung von Frequenz und Dauer eingehender sensorischer Signale in den Hippokampus abhängt“, sagt Matthias Eder.

Ansprechpartner

Dr. Barbara Meyer
Max-Planck-Institut für Psychiatrie, München
Telefon: +49 89 30622-616
Fax: +49 89 30622-348
Email: bmeyer@­mpipsykl.mpg.de
Originalveröffentlichung
Jens Stepan, Julien Dine, Thomas Fenzl, Stephanie A. Polta, Gregor von Wolff, Carsten T. Wotjak and Matthias Eder
Entorhinal theta-frequency input to the dentate gyrus trisynaptically evokes hippocampal CA1 LTP

Frontiers in Neural Circuits 2012, Band 6, Artikel 64, Seite 1-13

Dr. Barbara Meyer | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/6354106/lernen_nervenzellen-hippokampus

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Auf der molekularen Streckbank
24.02.2017 | Technische Universität München

nachricht Sicherungskopie im Zentralhirn: Wie Fruchtfliegen ein Ortsgedächtnis bilden
24.02.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie