Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lernbremsen im Gehirn

12.05.2014

Hemmende Nervenzellen steuern das Lernverhalten von Mäusen

Ein lernfähiges Gehirn ist überlebenswichtig, denn nur wer lernt, kann in der Natur bestehen. Beim Lernen speichert das Gehirn neue Informationen, indem es die Verbindungsstärke zwischen Nervenzellen verändert. Ein Vorgang, der als synaptische Plastizität bezeichnet wird.


Dendrit einer Hauptnervenzelle in der Amygdala (weiß). Hemmende Synapsen sind rot dargestellt.

MPI f. Hirnforschung/ J. Lezkus

Wissenschaftler am Max-Planck-Institut für Hirnforschung in Frankfurt haben zusammen mit Forschern aus Basel erstmals nachgewiesen, dass beim Lernen hemmende Nervenzellen zumindest teilweise blockiert werden müssen. Diese Enthemmung fungiert dabei ähnlich wie das Loslassen des Bremspedals im Auto: Sind die hemmenden Nervenzellen weniger aktiv, beschleunigt sich das Lernen.

Lernen ist oft eine Frage des Timings: Unterschiedliche Reize werden besonders leicht miteinander verknüpft, wenn sie zeitlich eng aufeinanderfolgen. Die Max-Planck-Wissenschaftler haben sich dies in Konditionierungsexperimenten zunutze gemacht, in denen Mäuse lernten, auf einen Ton zu reagieren.

Damit dieser Lerneffekt eintreten kann, müssen die Synapsen auf den sogenannten Hauptnervenzellen der Amygdala empfindlicher werden. Die Forscher konzentrierten sich auf zwei Arten von hemmenden Nervenzellen, die die Proteine Parvalbumin und Somatostatin bilden. Beide Nervenzelltypen hemmen die Hauptnervenzellen der Amygdala.

Die Ergebnisse der Max-Planck-Forscher zeigen, dass beide Zelltypen während unterschiedlicher Phasen des Lernvorgangs gehemmt werden. Durch diese Enthemmung werden die Hauptnervenzellen stärker aktiviert. Durch den Einsatz von Optogenetik konnten die Forscher zudem das Lernverhalten der Mäuse steuern.

Dabei statteten sie die beiden Arten von hemmenden Nervenzellen in der Amygdala mit lichtempfindlichen Ionenkanälen aus und schalteten so die Neurone mittels Licht gezielt an oder aus. „Wenn wir die Enthemmung verhindern, lernen die Mäuse schlechter. Im Gegensatz dazu führt eine Verstärkung der Enthemmung zu intensiverem Lernen“, sagt Johannes Letzkus vom Max-Planck-Institut für Hirnforschung. Als nächstes wollen die Wissenschaftler die Nervenbahnen identifizieren, die an der Enthemmung beteiligt sind.

Originalpublikation:
Steffen B. E. Wolff, Jan Gründemann, Philip Tovote, Sabine Krabbe, Gilad A. Jacobson, Christian Müller, Cyril Herry, Ingrid Ehrlich, Rainer W. Friedrich, Johannes J. Letzkus* and Andreas Lüthi
Amygdala interneuron subtypes control fear learning through disinhibition.
Nature, online vorab veröffentlicht; 11. Mai 2014

Ansprechpartner:
Dr. Johannes Letzkus
Max-Planck-Institut für Hirnforschung, Frankfurt am Main
Telefon: +49 69 850033-1430
E-Mail:johannes.letzkus@brain.mpg.de

Dr. Arjan Vink
Max-Planck-Institut für Hirnforschung, Frankfurt am Main
Telefon: +49 69 850033-2900
Fax: +49 69 850033-2999
E-Mail:pr@brain.mpg.de

Dr. Johannes Letzkus | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8187995/hemmende_synapsen_lernen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Diabetesforschung: Neuer Mechanismus zur Regulation des Insulin-Stoffwechsels gefunden
06.12.2016 | Universität Osnabrück

nachricht Was nach der Befruchtung im Zellkern passiert
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weiterbildung zu statistischen Methoden in der Versuchsplanung und -auswertung

06.12.2016 | Seminare Workshops

Bund fördert Entwicklung sicherer Schnellladetechnik für Hochleistungsbatterien mit 2,5 Millionen

06.12.2016 | Förderungen Preise

Innovationen für eine nachhaltige Forstwirtschaft

06.12.2016 | Agrar- Forstwissenschaften