Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie leiten Nervenzellen Signale weiter?

12.10.2009
PNAS: Neues Verfahren ermöglicht tiefere Einblicke

Wie leitet unser Körper nervliche Reize weiter und wie formieren sich im Gedanken? Forscher sind bei der Aufklärung der Signalübertragung zwischen den Nervenzellen einen wichtigen Schritt weitergekommen.

An der Technischen Universität Braunschweig und am Max-Planck-Institut für Biophysikalische Chemie in Göttingen haben sie gemeinsam die Übertragung von Botenstoffen von einer Zelle zur nächsten im Reagensglas nachgestellt und mit einer neuen Methode untersucht. (PNAS October 12, 2009, www.pnas.org/content/current)

Auf die Plätze, fertig, los
... so könnte eine Kurzzusammenfassung der elementaren Vorgänge lauten, die bei der Kommunikation zwischen Nervenzellen auftreten. Für die Übertragung von Signalen zwischen den Zellen sorgen chemische Botenstoffe, genannt Neurotransmitter. Sie sind innerhalb der Nervenzellen in kleinen Bläschen, den Vesikeln, gespeichert. Solche Vesikel schwimmen aber normalerweise frei in der Zelle herum und würden daher viel zu lange brauchen, um die Botenstoffe für die Signalweiterleitung an die Zellwand zu bringen. Daher docken frisch mit Botenstoff gefüllte Nervenvesikel zuvor an die Zellwand an ("Auf die Plätze!"), um dort auf den Startschuss für eine Entleerung der Botenstoffe zu warten ("fertig!").

Sobald der Startschuss in Form eines chemischen Signals kommt ("los!") reißen die Vesikel zusammen mit der Zellwand auf und schütten sofort Botenstoffe in die Zellumgebung aus. Von den Nachbarzellen werden diese Stoffe dann aufgenommen und erkannt. Das Andocken in die "Startposition" ist daher von elementarer Wichtigkeit, damit das Denken und Fühlen schnell und effizient ablaufen kann. Da es aber bisher sehr schwer war, diesen Zwischenzustand kurz vor dem Startschuss zu beobachten, war bisher unbekannt, wie der Startschuss genau aussieht und kontrolliert wird.

Fusion nach dem Reißverschlussprinzip

Prof. Peter Jomo Walla und Prof. Reinhard Jahn, die beide Arbeitsgruppen für Biophysikalische Chemie an der TU Braunschweig bzw. am Max-Planck-Institut in Göttingen leiten, sind nun den Mechanismen des Denkens und Fühlens ein wesentliches Stück näher gekommen, da sie eine neue Methode entwickelt haben, mit der sie den Moment vor dem Startschuss sowie die zeitlichen Abläufe des nervlichen Wettlaufs genau beobachten können. Die Wissenschaftler haben Vesikel farbig markiert und können sehr viele von ihnen unter einem Spezialmikroskop gleichzeitig beobachten. "Mit unserem neuen Verfahren können wir nun gezielt einzelne Biomoleküle hinzugeben oder weglassen und so untersuchen, welche davon wichtig sind und wie die Mechanismen genau ablaufen", erklärt Prof. Peter Jomo Walla.

Zunächst werden die Vesikel mit Proteinen wie mit kleinen Klammern an die Zellwand geheftet. Erst, wenn an dieser Stelle ein Nervenreiz von außen auftrifft, zum Beispiel in Form einer höheren Konzentration von Kalziumionen, löst dies die entscheidende Reaktion aus: Die Membran (Außenhaut) des Vesikels vereinigt sich blitzschnell mit der Zellmembran, und das Vesikel stülpt seinen Inhalt nach außen. Das Ganze geschieht innerhalb von Sekundenbruchteilen und spielt sich in Größenordnungen von nur wenigen Nanometern ab.

"Das kann man sich vorstellen wie bei einem Reißverschluss, der den Stoff auf der einen Seite gezielt öffnet und dann mit einem anderen Stück Stoff verbindet", erläutert Walla. "Bisher wurde meist nur beobachtet, wie das System vor und nach der Ausschüttung aussieht - sozusagen der Läufer vorher in der Umkleidekabine und nachher auf dem Siegerpodest. Aber um die Mechanismen wirklich zu verstehen, ist natürlich der Moment kurz vor dem Startschuss entscheidend. Mit unserer neuen Methode können wir dies nun ganz einfach erkennen und herausfinden, wie der Mann mit der Pistole wirklich aussieht und wie der Läufer startet."

Kontakt:
Prof. Peter Jomo Walla
Technische Universität Braunschweig
Institut für Physikalische und Theoretische Chemie
Abteilung Biophysikalische Chemie
Hans-Sommer-Str. 10
38106 Braunschweig
Tel-Nr.: +49 531 391 5328
p.walla@tu-braunschweig.de
Max-Planck-Institut für Biophysikalische Chemie
Am Faßberg 11
37077 Göttingen
Tel-Nr.: +49 551 201 1087

Ulrike Rolf | idw
Weitere Informationen:
http://www.pnas.org/content/current
http://www.tu-braunschweig.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics