Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leistungsfähiges Werkzeug für die Gentechnik

22.11.2013
Braunschweiger Wissenschaftler beschreiben neue Möglichkeiten des CRISPR-Cas-Systems

Viren können nicht nur den Menschen krank machen, sie befallen auch Bakterien. Diese schützen sich mit einer Art „Immunsystem“, das – vereinfacht gesagt – aus einer bestimmten Sequenz im Erbmaterial des Bakteriums und einem dazu passenden Enzym besteht. Es erkennt fremde DNA, die beispielsweise von Viren stammen kann, zerschneidet sie und macht dadurch die Eindringlinge unschädlich.


Streptococcus pyogenes ist eines der Bakterien, dessen CRISPR-Cas-System die HZI-Forscher untersucht haben. © HZI / Rohde

Wissenschaftler am Helmholtz-Zentrum für Infektionsforschung (HZI) in Braunschweig konnten jetzt zeigen, dass sich das beteiligte Enzym Cas9 in verschiedenen Bakterienstämmen unabhängig voneinander entwickelt hat – was die biotechnologischen Nutzungsmöglichkeiten des bakteriellen Immunsystems erweitert.

Erst vor wenigen Jahren entdeckt, stößt das Immunsystem mit dem kryptischen Namen „CRISPR-Cas“ bei Genetikern und Biotechnologen auf großes Interesse, denn es eignet sich als gentechnisches Werkzeug im Labor. CRISPR steht für Clustered Regularly Interspaced Palindromic Repeats, zu Deutsch etwa „gehäuft auftretende, gleichmäßig verteilte Wiederholungen, die aus beiden Richtungen gelesen werden können“; Cas schlicht für das CRISPR-assozierte Protein. Im Laufe der Evolution hat sich dieses Molekül in zahlreichen Bakterienstämmen unabhängig voneinander entwickelt.

Das konnten die Forscher um Prof. Emmanuelle Charpentier am Brauschweiger Helmholtz-Zentrum für Infektionsforschung (HZI) jetzt zeigen. Sie veröffentlichen diese Ergebnisse in dem frei zugänglichen internationalen Fachmagazin Nucleic Acids Research.

Nicht nur für die Bakterien, auch für die Arbeit im Labor erweist sich das CRISPR-Cas-Systems als nützlich: Es erkennt zielgenau bestimmte Buchstabenfolgen im genetischen Code und schneidet die DNA dort auf. So können Wissenschaftler entweder Gene entfernen oder an der Schnittstelle neue einfügen. Auf diesem Wege lassen sich beispielsweise Pflanzen züchten, die resistent gegen Schädlinge oder Pilze sind.

Zwar existieren bereits andere Technologien, mit denen dies möglich ist, diese sind allerdings zeitaufwendig, teuer und wenig spezifisch. Die neue Methode hingegen, für die die bakterielle Immunabwehr Pate stand, ist schneller, präziser und kostengünstiger, da sie mit weniger Komponenten auskommt und auch lange Gen-Sequenzen ansteuern kann.

Dadurch ist sie auch vielseitiger, denn durch kleinere Veränderungen lässt sie sich an verschiedene Anwendungen anpassen. „Das CRISPR-Cas-System ist ein sehr leistungsfähiges Werkzeug für die Gentechnik“, sagt Emmanuelle Charpentier, die mit ihrem Team Ende vergangenen Jahres aus dem schwedischen Umeå ans HZI gewechselt ist und 2013 mit der angesehenen Humboldt-Professur ausgezeichnet wurde. „Wir haben das Enzym Cas9 und die duale tracrRNA-cdRNA in zahlreichen unterschiedlichen Bakterienstämmen untersucht und verglichen.“

Anhand ihrer Ergebnisse können die Forscher die Cas9-Proteine aus verschiedenen Bakterien in Gruppen einteilen. Innerhalb der Gruppen sind die Komponenten des CRISPR-Cas-Systems austauschbar, zwischen den Gruppen hingegen nicht.

Das ermöglicht neue Wege für die Nutzung der Technik im Labor: Die Enzyme aus verschiedenen Gruppen können kombiniert und so mehrere Änderungen in der Ziel-DNA gleichzeitig vorgenommen werden. Denkbar ist dadurch beispielsweise eine Therapie von Erbkrankheiten, die durch mehrere Mutationen im Erbgut des Patienten verursacht werden. Auch für die Bekämpfung des AIDS-Erregers HIV ließe sich die Methode nutzen: Das Virus nutzt einen Rezeptor der menschlichen Immunzellen, um diese zu infizieren. Mittels CRISPR-Cas ließe sich das Gen für den Rezeptor aus den Immunzellen entfernen, dadurch würden die Patienten immun gegen das Virus. Bis sich diese Zukunftsvision realisieren lässt, ist allerdings noch viel Forschungsarbeit notwendig.

Dennoch zeigen die Beispiele, wie viel Potential in CRISPR-Cas steckt: „Manche Kollegen vergleichen die Technik bereits mit der PCR“, sagt Charpentier. Diese in den 1980er Jahren entwickelte Methode zum „Kopieren“ von Nukleinsäuren ermöglicht es, winzige Mengen von DNA so stark zu vervielfältigen, dass sie biochemisch untersucht werden kann. Ohne diese Technologie, die das molekularbiologische Arbeiten revolutioniert hat, wären viele heute alltägliche Experimente nicht denkbar.

Dabei war Charpentier eigentlich nicht auf der Suche nach neuen Methoden der Molekularbiologie. „Ursprünglich haben wir nach neuen Angriffszielen von Antibiotika gesucht. Entdeckt haben wir etwas ganz anderes“, sagt Charpentier. Durchaus keine Seltenheit in der Forschung, schließlich wurden einige der bedeutendsten Entdeckungen „nebenbei“ oder zufällig gemacht.

Originalpublikation:
Ines Fonfara, Anaïs Le Rhun, Krzysztof Chylinski, Kira Makarova, Anne-Laure Lécrivain, Janek Bzdrenga, Eugene V. Koonin, Emmanuelle Charpentier
Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems

Nucleic Acids Research, 2013, DOI: 10.1093/nar/gkt1074

Die Abteilung Regulation in der Infektionsbiologie untersucht, wie die Expression von bakterieller RNA und bakteriellen Proteinen gesteuert wird. Diese beiden Faktoren haben entscheidenden Einfluss auf Beginn und Verlauf von Infektionen.

Das Helmholtz-Zentrum für Infektionsforschung (HZI)
Am Helmholtz-Zentrum für Infektionsforschung (HZI) untersuchen Wissenschaftler die Mechanismen von Infektionen und ihrer Abwehr. Was Bakterien oder Viren zu Krankheitserregern macht: Das zu verstehen soll den Schlüssel zur Entwicklung neuer Medikamente und Impfstoffe liefern. http://www.helmholtz-hzi.de

Dr. Jan Grabowski | Helmholtz-Zentrum
Weitere Informationen:
http://www.helmholtz-hzi.de
http://www.helmholtz-hzi.de/de/aktuelles/news/ansicht/article/complete/leistungsfaehiges_werkzeug_fuer_die_gentechnik/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher sehen Biomolekülen bei der Arbeit zu
05.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Wie sich Zellen gegen Salmonellen verteidigen
05.12.2016 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten