Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Den Lebensnerv des Tumors treffen

19.01.2010
Schweizerisch-Finnisches Forschungsteam klärt Struktur einer wichtigen Ansatzstelle für Krebsmedikamente

Um wachsen zu können, muss ein Krebstumor von Blut- und Lymphgefässen durchzogen sein, die ihn mit Sauerstoff und Nährstoffen versorgen und durch die der in der Zelle entstehende Abfall entsorgt werden kann.

Um sich diese Versorgung zu sichern, senden Tumore Botenstoffe aus, die umliegende Gefässe veranlassen, sich zu verzweigen und in den Tumor hineinzuwachsen. Einen wichtigen Schritt zum besseren Verständnis der molekularen Vorgänge bei der Gefässbildung in Tumoren haben nun Forschende des Paul Scherrer Instituts und des Biomedicum in Helsinki, Finnland gemacht.

Sie haben die Struktur der Bindungsstelle aufgeklärt, an der sich ein Botenstoffmolekül mit dem entsprechenden Rezeptor auf der Zelloberfläche verbindet. Durch diese Verbindung wird das Wachstum der Lymphgefässe angeregt. Dieses Wissen kann in der Zukunft für die weitere Entwicklung neuer Medikamente verwendet werden, die diese Rezeptoren gezielt blockieren. So können diese Mittel das Wachstum der Gefässe verhindern und den Tumor aushungern. Die Ergebnisse erscheinen in der Woche vom 18. Januar in der Online-Ausgabe der Zeitschrift der Amerikanischen Akademie der Wissenschaften (PNAS - Proceedings of the National Academy of Sciences of the United States of America).

Vor ca. 20 Jahren hat der amerikanische Mediziner Judah Folkman eine neuartige Tumortherapie vorgeschlagen, bei der durch gezielte Blockierung des Wachstums der Tumorblutgefässe der Tumor ausgehungert und so indirekt an seiner Ausbreitung gehindert würde. Ein auf diesem Konzept bestehender Therapieansatz wurde in der Zwischenzeit entwickelt und wird in der Klinik angewendet. Um dieses Verfahren optimieren zu können, ist es wichtig, die genauen molekularen Vorgänge zu verstehen, die hinter der Bildung der Gefässe stehen. Dazu haben die Forschenden aus der Schweiz und aus Finnland nun einen entscheidenden Beitrag geleistet.

Moleküle, die für das Wachstum von Gefässen verantwortlich sind, werden von Fachleuten mit der Abkürzung VEGF (vascular endothelial growth factor) bezeichnet. Das untersuchte Molekül, das das Wachstum von Lymphgefässen anregt, heisst VEGF-C. Ein VEGF-Molekül ist biochemisch gesehen ein Protein, also ein hochkomplexes Biomolekül bestehend aus tausenden von Atomen. Es wird aktiv, in dem es sich mit dem Ende eines anderen Proteins (dem Rezeptor), verbindet, das in der Membran einer lebenden Zelle eingebaut ist. Die Bindung von VEGF an den Rezeptor bewirkt eine Veränderung der Struktur dieses Membranproteins und die daraus folgende Strukturänderung wirkt sich innert Sekunden auch auf der Innenseite der Zellmembran aus und löst dort chemische Reaktionen aus, die zur Veränderung der Zellen führen. Im hier untersuchten Fall wird die Zelle angeregt, sich zu teilen und so am Wachstum neuer Blut- und Lymphgefässe teilzuhaben.

Damit die Kombination von Signalmolekül und Rezeptor richtig funktioniert, müssen beide die richtige einmalige Molekülstruktur haben - das heisst tausende von Atomen müssen korrekt im dreidimensionalen Raum angeordnet sein. Um diese Struktur im Detail zu bestimmen, haben die Forschenden die Moleküle an der Synchrotron Lichtquelle Schweiz SLS des Paul Scherrer Instituts untersucht. Dieser Teilchenbeschleuniger mit 288 Metern Umfang erzeugt besonders intensives Röntgenlicht, mit dem unter anderem die Struktur komplexer Proteine aufgeklärt werden kann. Dazu wird das Verfahren der Proteinkristallographie genutzt, bei dem viele solcher Moleküle in einer regelmässigen Form angeordnet (kristallisiert) und anschliessend mit dem Röntgenlicht durchstrahlt werden. Dabei wird ein Teil des Lichtes in bestimmte Richtungen abgelenkt. Aus diesen Ablenkrichtungen können die Forschenden dann die detaillierte Struktur des Proteins bestimmen.

Das am PSI laufende Projekt, das zur Publikation in PNAS führte, wird vom PSI, vom Schweizerischen Nationalfonds SNF und der Schweizerischen Krebsliga unterstützt.

Über das PSI

Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Festkörperforschung und Materialwissenschaften, Elementarteilchenphysik, Biologie und Medizin, Energie- und Umweltforschung. Mit 1300 Mitarbeitenden und einem Jahresbudget von rund 260 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.

Weitere Informationen:
Prof. Dr. Kurt Ballmer-Hofer, Labor für Biomolekulare Forschung, Paul Scherrer Institut, 5232 Villigen PSI, Schweiz

E-Mail: kurt.ballmer@psi.ch, Telefon: +41(0)56 310 4165 [Deutsch, Englisch]

Dr. Andrea Prota, Labor für Biomolekulare Forschung, Paul Scherrer Institut, 5232 Villigen PSI, Schweiz

E-mail: andrea.prota@psi.ch, Telefon: +41-(0)56 310 5160 [Deutsch, Englisch, Italienisch, Französisch]

Originalveröffentlichung:
Veli-Matti Leppänen, Andrea E. Prota, Michael Jeltsch, Andrey Anisimov, Nisse Kalkkinen, Tomas Strandin, Hilkka Lankinen, Adrian Goldman, Kurt Ballmer-Hofer, and Kari Alitalo; "Structural determinants of growth factor binding and specificity by VEGF receptor 2"; PNAS Early Edition, January 18, 2010

Dagmar Baroke | idw
Weitere Informationen:
http://www.psi.ch

Weitere Berichte zu: Atom Biomolekular LEBENSNERV Lymphgefässe Molekül PNAS PSI Protein Rezeptor Röntgenlicht VEGF Zelle chemische Reaktion

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entzündung weckt Schläfer
29.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher wollen Glyphosat „entzaubern“
29.03.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten