Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Den Lebensnerv des Tumors treffen

19.01.2010
Schweizerisch-Finnisches Forschungsteam klärt Struktur einer wichtigen Ansatzstelle für Krebsmedikamente

Um wachsen zu können, muss ein Krebstumor von Blut- und Lymphgefässen durchzogen sein, die ihn mit Sauerstoff und Nährstoffen versorgen und durch die der in der Zelle entstehende Abfall entsorgt werden kann.

Um sich diese Versorgung zu sichern, senden Tumore Botenstoffe aus, die umliegende Gefässe veranlassen, sich zu verzweigen und in den Tumor hineinzuwachsen. Einen wichtigen Schritt zum besseren Verständnis der molekularen Vorgänge bei der Gefässbildung in Tumoren haben nun Forschende des Paul Scherrer Instituts und des Biomedicum in Helsinki, Finnland gemacht.

Sie haben die Struktur der Bindungsstelle aufgeklärt, an der sich ein Botenstoffmolekül mit dem entsprechenden Rezeptor auf der Zelloberfläche verbindet. Durch diese Verbindung wird das Wachstum der Lymphgefässe angeregt. Dieses Wissen kann in der Zukunft für die weitere Entwicklung neuer Medikamente verwendet werden, die diese Rezeptoren gezielt blockieren. So können diese Mittel das Wachstum der Gefässe verhindern und den Tumor aushungern. Die Ergebnisse erscheinen in der Woche vom 18. Januar in der Online-Ausgabe der Zeitschrift der Amerikanischen Akademie der Wissenschaften (PNAS - Proceedings of the National Academy of Sciences of the United States of America).

Vor ca. 20 Jahren hat der amerikanische Mediziner Judah Folkman eine neuartige Tumortherapie vorgeschlagen, bei der durch gezielte Blockierung des Wachstums der Tumorblutgefässe der Tumor ausgehungert und so indirekt an seiner Ausbreitung gehindert würde. Ein auf diesem Konzept bestehender Therapieansatz wurde in der Zwischenzeit entwickelt und wird in der Klinik angewendet. Um dieses Verfahren optimieren zu können, ist es wichtig, die genauen molekularen Vorgänge zu verstehen, die hinter der Bildung der Gefässe stehen. Dazu haben die Forschenden aus der Schweiz und aus Finnland nun einen entscheidenden Beitrag geleistet.

Moleküle, die für das Wachstum von Gefässen verantwortlich sind, werden von Fachleuten mit der Abkürzung VEGF (vascular endothelial growth factor) bezeichnet. Das untersuchte Molekül, das das Wachstum von Lymphgefässen anregt, heisst VEGF-C. Ein VEGF-Molekül ist biochemisch gesehen ein Protein, also ein hochkomplexes Biomolekül bestehend aus tausenden von Atomen. Es wird aktiv, in dem es sich mit dem Ende eines anderen Proteins (dem Rezeptor), verbindet, das in der Membran einer lebenden Zelle eingebaut ist. Die Bindung von VEGF an den Rezeptor bewirkt eine Veränderung der Struktur dieses Membranproteins und die daraus folgende Strukturänderung wirkt sich innert Sekunden auch auf der Innenseite der Zellmembran aus und löst dort chemische Reaktionen aus, die zur Veränderung der Zellen führen. Im hier untersuchten Fall wird die Zelle angeregt, sich zu teilen und so am Wachstum neuer Blut- und Lymphgefässe teilzuhaben.

Damit die Kombination von Signalmolekül und Rezeptor richtig funktioniert, müssen beide die richtige einmalige Molekülstruktur haben - das heisst tausende von Atomen müssen korrekt im dreidimensionalen Raum angeordnet sein. Um diese Struktur im Detail zu bestimmen, haben die Forschenden die Moleküle an der Synchrotron Lichtquelle Schweiz SLS des Paul Scherrer Instituts untersucht. Dieser Teilchenbeschleuniger mit 288 Metern Umfang erzeugt besonders intensives Röntgenlicht, mit dem unter anderem die Struktur komplexer Proteine aufgeklärt werden kann. Dazu wird das Verfahren der Proteinkristallographie genutzt, bei dem viele solcher Moleküle in einer regelmässigen Form angeordnet (kristallisiert) und anschliessend mit dem Röntgenlicht durchstrahlt werden. Dabei wird ein Teil des Lichtes in bestimmte Richtungen abgelenkt. Aus diesen Ablenkrichtungen können die Forschenden dann die detaillierte Struktur des Proteins bestimmen.

Das am PSI laufende Projekt, das zur Publikation in PNAS führte, wird vom PSI, vom Schweizerischen Nationalfonds SNF und der Schweizerischen Krebsliga unterstützt.

Über das PSI

Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Festkörperforschung und Materialwissenschaften, Elementarteilchenphysik, Biologie und Medizin, Energie- und Umweltforschung. Mit 1300 Mitarbeitenden und einem Jahresbudget von rund 260 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.

Weitere Informationen:
Prof. Dr. Kurt Ballmer-Hofer, Labor für Biomolekulare Forschung, Paul Scherrer Institut, 5232 Villigen PSI, Schweiz

E-Mail: kurt.ballmer@psi.ch, Telefon: +41(0)56 310 4165 [Deutsch, Englisch]

Dr. Andrea Prota, Labor für Biomolekulare Forschung, Paul Scherrer Institut, 5232 Villigen PSI, Schweiz

E-mail: andrea.prota@psi.ch, Telefon: +41-(0)56 310 5160 [Deutsch, Englisch, Italienisch, Französisch]

Originalveröffentlichung:
Veli-Matti Leppänen, Andrea E. Prota, Michael Jeltsch, Andrey Anisimov, Nisse Kalkkinen, Tomas Strandin, Hilkka Lankinen, Adrian Goldman, Kurt Ballmer-Hofer, and Kari Alitalo; "Structural determinants of growth factor binding and specificity by VEGF receptor 2"; PNAS Early Edition, January 18, 2010

Dagmar Baroke | idw
Weitere Informationen:
http://www.psi.ch

Weitere Berichte zu: Atom Biomolekular LEBENSNERV Lymphgefässe Molekül PNAS PSI Protein Rezeptor Röntgenlicht VEGF Zelle chemische Reaktion

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wegbereiter für Vitamin A in Reis
21.07.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Pharmakologie - Im Strom der Bläschen
21.07.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten