Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lebendige Knochen aus dem 3D-Drucker

12.03.2015

Freiburger Wissenschaftler wollen Gewebe mit eingebauten Blutgefäßen drucken / Förderung durch Deutsche Forschungsgemeinschaft

Knochen mit eigenen Blutgefäßen könnten künftig mit dem 3D-Drucker hergestellt werden. Freiburger Wissenschaftler entwickeln jetzt ein Druck-Verfahren, das aus Zellen von Knochen und Blutgefäßen funktionsfähige Knochen erzeugt.


Künstliches Knochengewebe mit angelegten Blutgefäßen. Grün: Knochenzellen; rot: Endothelzellen

IMTEK / Universität Freiburg

Die Gefäßzellen sollen die Durchblutung des Gewebes verbessern, indem sie eine Verbindung zum Blutkreislauf des Patienten herstellen. Für die Entwicklung dieser 3D-Druck-Methode erhalten die Wissenschaftlerinnen und Wissenschaftler eine dreijährige Förderung der Deutschen Forschungsgemeinschaft (DFG) in Höhe von 460.000 Euro.

Sollte sich das Verfahren bewähren, könnten damit auch größere Kunstgewebe gedruckt werden, bis hin zu ganzen Organen. Klinische Bedeutung dürften 3D-Zelldrucker nach Ansicht der Wissenschaftler in fünf bis sieben Jahren erlangen.  

Gezielte Blutversorgung für künstliches Gewebe  

„Bei der Entwicklung von künstlichem Knochengewebe ist die Frage der Blutversorgung noch immer weitgehend ungelöst. Dadurch ist sowohl die Größe als auch der Typ des Gewebes stark beschränkt“, sagt Prof. Dr. Günter Finkenzeller, Forschungs-Sektionsleiter an der Klinik für Plastische und Handchirurgie des Universitätsklinikums Freiburg.

Er leitet das Projekt gemeinsam mit Dr. Peter Koltay, leitender wissenschaftlicher Mitarbeiter am Institut für Mikrosystemtechnik (IMTEK) der Universität Freiburg. Bekannt ist, dass sich die Blutversorgung eines künstlich erzeugten Gewebes durch sogenannte Endothelzellen verbessern lässt. Diese Zellen kleiden die Gefäße aus und können auch selbst neue bilden. Doch bisher stirbt ein Großteil der Knochenzellen aufgrund von Sauerstoffmangel, bevor die Zellen Gefäße gebildet haben.

„Unser Ansatz sieht vor, dass wir die Endothelzellen genauso wie die Knochenzellen per 3D-Druck im Gewebe an die Stelle platzieren, wo sich die Gefäße ausbilden sollen“, sagt Prof. Finkenzeller. „Die Gefäße des künstlichen Gewebes könnten dann zeitnah nach der Operation mit den Gefäßen des umgebenden gesunden Gewebes zusammenwachsen und so die Blutversorgung des Kunstgewebes sicherstellen“, erläutert der Wissenschaftler weiter.  

Mit Spezialdruckern ist es bereits heute möglich, kleine und relativ einfach strukturierte Gewebeeinheiten zu drucken. Dafür werden dem Körper Zellen entnommen, in einer Nährlösung vermehrt und mit einem 3D-Drucker in eine Trägermatrix eingebracht. Diese wird dann implantiert.

„Der 3D-Druck von lebendigem Hautgewebe könnte in fünf bis sieben Jahren klinisch Bedeutung erhalten“, sagt Prof. Finkenzeller. „Bei der Herstellung und Implantation von Knochengewebe wird es allerdings länger dauern, da dafür noch zentrale Fragen der Gewebe-Abstoßungs-Reaktion geklärt werden müssen.“  

„Das Forschungsprojekt könnte erheblich zum Fortschritt der Forschung und Technologie im Bereich der Gewebeersatzforschung und des Tissue Engineering beitragen“, sagt Dr. Koltay. In einem ersten Schritt wird ein spezieller „BioPrinter“ gebaut.

„Wir können schon heute Zellen lebend und schonend  gezielt drucken“, sagt Dr. Koltay. „Jetzt müssen wir das Verfahren so anpassen, dass damit Knochenzellen und Blutgefäßzellen verarbeitet werden können und diese einen funktionsfähigen Gewebeverband bilden.“ In einem späteren Schritt erfolgt dann die Überprüfung der Methode anhand chirurgischer Modelle.  

Kontakt
Prof. Dr. Günter Finkenzeller
Forschungssektionsleiter für Forschung und Tissue Engineering
Klinik für Plastische und Handchirurgie
Universitätsklinikum Freiburg
Telefon: 0761 270-63670
guenter.finkenzeller@uniklinik-freiburg.de  

Dr. Peter Koltay
Leitender Wissenschaftler
Institut für Mikrosystemtechnik – IMTEK
Universität Freiburg
Tel: 0761 203-73240
koltay@imtek.uni-freiburg.de

Weitere Informationen:

http://www.uniklinik-freiburg.de/plastischechirurgie.html Klinik für Plastische und Handchirurgie, Universitätsklinikum Freiburg
http://www.imtek.de/Institut für Mikrosystemtechnik, Albert-Ludwigs-Universität Freiburg
http://gepris.dfg.de/gepris/person/1651885 DFG-Profil von Prof. Dr. Günter Finkenzeller
http://gepris.dfg.de/gepris/person/121629976 DFG-Profil von Dr. Peter Koltay

Benjamin Waschow | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikroorganismen auf zwei Kontinenten studieren
13.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Neue Wirkstoffe aus dem Baukasten: Design und biotechnologische Produktion neuer Peptid-Wirkstoffe
13.12.2017 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungsnachrichten

Neue Wirkstoffe aus dem Baukasten: Design und biotechnologische Produktion neuer Peptid-Wirkstoffe

13.12.2017 | Biowissenschaften Chemie

Analyse komplexer Biosysteme mittels High-Performance-Computing

13.12.2017 | Informationstechnologie