Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lebende Zellen zum Fluoreszieren gebracht

09.08.2010
Einzelne Moleküle und ihre Dynamik lassen sich auch in lebenden Zellen mit herkömmlichen Fluoreszenz-Farbstoffen mit einer Auflösung von etwa 20 Nanometern sichtbar machen. Wie das geht, zeigen Forscher aus Würzburg, Bielefeld und New York erstmals in der Zeitschrift „Nature Methods“.

Was läuft in einer Zelle zwischen den Molekülen ab, wie kann man diese Vorgänge sichtbar machen? Mit dieser Frage befasst sich das Team von Professor Markus Sauer am Biozentrum der Universität Würzburg. Die Gruppe setzt dabei auf neueste Techniken der Fluoreszenz-Mikroskopie, die sich durch eine hohe zeitliche und räumliche Auflösung auszeichnen.

Wie Fluoreszenz-Mikroskopie funktioniert? Einfach gesagt: DNA, Proteine oder andere Moleküle in der Zelle werden mit fluoreszierenden Farbstoffen markiert. „Beschießt“ man die Zelle dann mit Laserpulsen, leuchten die markierten Moleküle kurzzeitig auf. Ihr Fluoreszenzsignal, gewissermaßen das „Licht-Echo“, lässt sich mit technischen Tricks sichtbar machen.

Optisch schaltbare Farbstoffe liefern schärfere Bilder

Wer mit dem Fluoreszenz-Mikroskop zum Beispiel viele einzelne Proteine abbilden will, steht vor einer Herausforderung: Leuchten alle Proteine in der Zelle gleichzeitig auf, erscheint im Mikroskop nur ein verwaschener Lichtfleck.

Grund: Die Proteine liegen zu nah beieinander, ihre Lichtsignale überlappen sich – wie bei einem Kreuzfahrtschiff, auf dem in allen Kabinen das Licht an ist. Aus zu großer Entfernung sieht das Auge dann auch nur einen einzigen Lichtfleck. Würde man aber die Lichter an Bord einzeln und nur für kurze Zeit anschalten, ließe sich die Position jeder Kabine genau bestimmen. „Falls sich das Schiff dabei bewegt, muss das natürlich schnell gehen, damit die Lichtsignale nicht verschmieren", sagt Markus Sauer.

Genau diese Strategie wendet das Würzburger Team an – mit Fluoreszenz-Farbstoffen, die sich durch Lichtsignale an- und ausschalten lassen, die „optisch schaltbar“ sind, wie die Forscher sagen. Damit ergeben sich deutlich schärfere Bilder von den Zuständen in der Zelle.

Lebende Zellen mit herkömmlichen Farbstoffen untersuchbar

Optisch schaltbare Fluoreszenz-Farbstoffe versagen in lebenden Zellen, weil die Gegenwart von Sauerstoff stört – das war die bislang vorherrschende Meinung in der Wissenschaft. Doch Sauers Team hat mit Kollegen in Bielefeld und New York nun erstmals gezeigt, dass das Gegenteil der Fall ist: „Wir haben den Mechanismus durchschaut und wissen, dass es auch in lebenden Zellen geht.“

Wie dieser Mechanismus aussieht? Zellen enthalten Glutathion, das die meisten kommerziell verfügbaren optisch schaltbaren Farbstoffe nach der Laseranregung in einen stabilen, mehrere Sekunden dauernden Aus-Zustand versetzt. Zugleich läuft eine Reaktion mit Sauerstoff ab, welche die Farbstoffe wieder anschaltet, aber sehr ineffizient ist. „Die Mehrzahl der Farbstoff-Moleküle ist darum ständig aus, und genau das ist die Voraussetzung, damit die superaufgelöste Bildgebung funktioniert“, erklärt Professor Sauer.

Histone im Zellkern markiert

Ihre Methodik exerzieren die Wissenschaftler in „Nature Methods“ an den Histonen lebender menschlicher Zellen vor. Histone sind Proteine, mit deren Hilfe die DNA im Zellkern platzsparend verpackt wird. Fünf verschiedene Histone gibt es, mit der Variante 2B haben die Forscher gearbeitet.

Zuerst koppelten sie die Histone vom Typ 2B an ein bakterielles Enzym (Dehydrofolatreduktase). Dann fügten sie den Fluoreszenz-Farbstoff dazu, den sie zuvor an das Antibiotikum Trimethoprim geknüpft hatten. Der Trick dabei: Das Antibiotikum verbindet sich hoch spezifisch mit dem Enzym; und über diese Behelfsbrücke lassen sich die Histone vom Typ 2B mit Farbstoffen markieren.

Nächster Schritt: Zellteilung beobachten

Mit dieser Methode haben die Forscher eine bereits bekannte Tatsache bestätigt: Die mit Histonen verpackte DNA bewegt sich im Zellkern, und zwar abhängig von der Phase des Zellzyklus mit einer Geschwindigkeit von einigen Nanometern pro Sekunde. Sauer: „Der nächste Schritt ist es jetzt, den Ablauf der Zellteilung in hoher Auflösung unter dem Mikroskop zu verfolgen.“

„Live Cell Super-Resolution Imaging with Trimethoprim Conjugates”, Richard Wombacher, Meike Heidbreder, Sebastian van de Linde, Michael P Sheetz, Mike Heilemann, Virginia W Cornish & Markus Sauer, Nature Methods, 8. August 2010, DOI 10.1038/nmeth.1489

Kontakt

Prof. Dr. Markus Sauer, Lehrstuhl für Biotechnologie und Biophysik der Universität Würzburg, T (0931) 31-88687, m.sauer@uni-wuerzburg.de

Stabsstelle Öffentlichkeitsarbeit der Universität
Sanderring 2, Raum 217, 97070 Würzburg
Pressesprecher: Dr. Georg Kaiser, Tel. (0931) 31-86002
presse@zv.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de/presse/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Möglicher Zell-Therapieansatz gegen Zytomegalie
22.02.2017 | Medizinische Hochschule Hannover

nachricht Erster Atemzug prägt Immunsystem nachhaltig
22.02.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

6. Internationale Fachkonferenz „InnoTesting“ am 23. und 24. Februar 2017 in Wildau

22.02.2017 | Veranstaltungen

Wunderwelt der Mikroben

22.02.2017 | Veranstaltungen

Der Lkw der Zukunft kommt ohne Fahrer aus

21.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ursache für eine erbliche Muskelerkrankung entdeckt

22.02.2017 | Medizin Gesundheit

Möglicher Zell-Therapieansatz gegen Zytomegalie

22.02.2017 | Biowissenschaften Chemie

Meeresforschung in Echtzeit verfolgen

22.02.2017 | Geowissenschaften