Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lebende Fossilien der Hirnentwicklung

16.05.2012
Göttinger Wissenschaftler rekonstruieren einen radikalen Umbau in der Evolution des Gehirns

Die Hirnarchitektur der Maus hat sich im Laufe ihrer Evolution möglicherweise kaum verändert. Wie bei den winzigen Urahnen der heutigen Säugetiere, die vor etwa 80 Millionen Jahren lebten, sind auch bei der Maus Nervenzellen in der Sehrinde in einem kleinen Hirnbereich zusammengedrängt.


Urahn (links) und Nachfahren. Das Bild links zeigt die Rekonstruktion eines büroklammergroßen, gemeinsamen Vorfahren aller heute lebenden Säugetiere (Hadrocodium wui) aus der frühen Kreidezeit; rechts ein Modell eines menschlichen Gehirns. Hinsichtlich ihrer Hirnorganisation stellt die Maus (Mitte) vermutlich ein „lebendes Fossil“ dar. Die Schemata zur Rechten zeigen die durchmischte (rechts) und modular geordnete Anordnung von Nervenzellen in der Großhirnrinde. © MPIDS

Bei der Evolution größerer Gehirne ist es zu einem radikalen Umbau der Architektur der Großhirnrinde gekommen. Zu diesem Ergebnis kommt ein internationales Forscherteam unter Führung von Göttinger Wissenschaftlern des Max-Planck-Instituts für Dynamik und Selbstorganisation, der Universität Göttingen und des Bernstein Zentrums for Computational Neuroscience Göttingen. Das Gehirn größerer Säugetiere, wie etwa des Menschen, ist hingegen völlig anders aufgebaut als das der Maus. Prozesse der Selbstorganisation ließen dort Module entstehen, in denen Neuronen gemeinsam spezielle Aufgaben übernehmen.

Menschen sind deutlich größer als fast alle ihre Vorfahren. Unsere Ururgroßeltern waren im Mittel etwa 10 Zentimeter kleiner als wir. Geht man weiter in die Vergangenheit zurück, dann nimmt der Größenunterschied zu den Vorfahren beeindruckende Ausmaße an. Die vor 80 Millionen Jahren lebenden Ahnen des Menschen und aller heute lebenden Säugetiere waren sämtlich leichter als 100 Gramm und meist nur wenige Zentimeter groß. Ökologische Nischen, die einen größeren Körperbau erlaubt hätten, waren von Dinosauriern besetzt. Erst das große Artensterben, das die Urzeitechsen vor 65 Millionen Jahren auslöschte, ermöglichte unseren Vorfahren einen „Wachstumsschub“ erdhistorischen Ausmaßes. Innerhalb nur weniger Millionen Jahre brachte die Evolution Säugetiere hervor, die mehr als 100-mal so groß waren wie ihre Vorfahren im Erdmittelalter.

Das internationale Wissenschaftlerteam unter Führung Göttinger Max-Planck-Forscher berichtet nun, dass dieser Wachstumsschub wahrscheinlich zu einer fundamentalen Umgestaltung von Nervenschaltkreisen im Gehirn geführt hat. An der Studie waren auch Wissenschaftler der Frankfurter Goethe-Universität sowie weitere internationale Partner beteiligt. Wie die Forscher entdeckten, haben verschiedene Abstammungslinien unabhängig voneinander Nervenschaltkreise im Sehzentrum der Großhirnrinde entwickelt, die bis in kleinste Details übereinstimmten. Computersimulationen und mathematische Berechnungen zeigen, dass diese Übereinstimmung grundlegende Gesetze der Selbstorganisation großflächiger Nervennetze widerspiegelt. Die Forscher weisen auf die Existenz „lebender Fossilien der Hirnentwicklung“ hin. Gemeint sind Tierarten, bei denen auch heute noch die Architektur der Nervenschaltkreise unserer Ahnen erhalten sein sollte. Zu ihnen gehört erstaunlicherweise auch einer der nächsten Verwandten der Primaten: die Maus.

Ein wesentlicher Aspekt der Evolution des Menschen bestand in der Vergrößerung des Gehirns und hierbei besonders der Großhirnrinde, zu deren Aufgaben die bewusste Wahrnehmung, Entscheidungsprozesse und viele Gedächtnisleistungen zählen. Dieser Hirnteil ist bei uns - wie auch bei vielen anderen Säugetieren - in Module untergliedert, in denen Gruppen von Neuronen in dichten Netzwerken miteinander verschaltet sind und gemeinsam jeweils eine Teilaufgabe, wie zum Beispiel die Wahrnehmung eines bestimmten Farbtons, übernehmen. Die nun veröffentlichte Arbeit analysiert die Evolution sogenannter Orientierungskolumnen, Module der Sehrinde, die der Formwahrnehmung beim Sehen zugrunde liegen.

Diese Module haben in der Regel eine Größe von ungefähr einem Millimeter und sind innerhalb der Sehrinde zu Hunderten nebeneinander angeordnet. Die neue Studie zeigt, dass diese räumliche Anordnung exakt eingehaltenen, geometrischen Regeln folgt. Erstaunlicherweise gelten die gleichen Gesetze in Abstammungslinien, die unabhängig voneinander große Gehirne entwickelt haben und auch bei Tieren, die sich in der Hirngröße stark voneinander unterscheiden. Die neuen Untersuchungen widerlegen damit eine konkurrierende Hypothese, nach der solche geometrischen Eigenschaften stark von der Hirngröße abhängen sollten. Über einen wesentlichen Bereich der evolutionären Vergrößerung des Gehirns scheint sich nur die Anzahl der Module vermehrt zu haben. Die Gesetze ihrer Anordnung blieben dabei unverändert.

Die Autoren weisen darauf hin, dass diese Gesetze nicht für die gesamte Stammesgeschichte gelten können. Wolfgang Keil, Erstautor der Untersuchung erklärt: „Bei unseren winzigen Vorfahren im Erdmittelalter müssen diese Gesetzmäßigkeiten des Hirnaufbaus an ihre Grenzen gestoßen sein. Ihre Gehirne waren so klein, dass nicht einmal ein einzelnes Modul in ihrer Großhirnrinde Platz gefunden hätte.“ Die Forscher halten es deshalb für wahrscheinlich, dass unsere Vorfahren eine fundamental andere Architektur ihrer Sehrinde aufwiesen.

In der Tat scheinen Orientierungskolumnen allen lebenden Säugern, die leichter als 100 Gramm sind, völlig zu fehlen. Bei Mäusen zum Beispiel sind Nervenzellen mit unterschiedlichen Aufgaben in der Sehrinde scheinbar wahllos durcheinander gemischt. Ob unsere Hirnarchitektur aus einer durchmischten oder vielleicht einer noch viel fremdartigeren Hirnorganisation entstanden ist, kann nach Einschätzung der Forscher erst nach weiteren Untersuchungen erschlossen werden. Eine wichtige Aufgabe zukünftiger Studien wird es sein, die Gesetzmäßigkeiten, die kleine Gehirne bestimmen, auszuloten. „Tatsächlich gibt es viele dunkle Kontinente hinsichtlich der Architektur der Sehrinde in den verschiedenen Abstammungslinien der Säugetiere“, erläutert Fred Wolf, Leiter der Studie am Göttinger Max-Planck-Institut für Dynamik und Selbstorganisation und am Bernstein Zentrum für Computational Neuroscience. Die Forscher hoffen, dass Ihre Arbeit Kollegen in aller Welt anregen wird, zur Lösung dieses grundlegenden Rätsels unserer Entstehungsgeschichte beizutragen.

Kontakt

Dr. Birgit Krummheuer
Max-Planck-Institut für Dynamik und Selbstorganisation
Telefon: +49 551 5176-668
Fax: +49 551 5176-702
Email: presse@­ds.mpg.de
Dr. Fred Wolf
Max-Planck-Institut für Dynamik und Selbstorganisation
Telefon: +49 551 5176-423
Fax: +49 551 5176-439
Email: fred@­nld.ds.mpg.de
Wolfgang Keil
Max-Planck-Institut für Dynamik und Selbstorganisation
Telefon: +49 551 5176551
Email: wolfgang@­nld.ds.mpg.de

Originalpublikation
Wolfgang Keil, Matthias Kaschube,, Michael Schnabel, Zoltan F. Kisvárday, Siegrid Löwel, David M. Coppola, Leonard E. White & Fred Wolf
Response to Comment on “Universality in the Evolution of Orientation Columns in the Visual Cortex.”

Science, 26 April 2012

Wolfgang Keil | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/5789702/fossilien_hirnentwicklung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht
18.10.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Pflanzen können drei Eltern haben
18.10.2017 | Universität Bremen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mobilität 4.0: Konferenz an der Jacobs University

18.10.2017 | Veranstaltungen

Smart MES 2017: die Fertigung der Zukunft

18.10.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

18.10.2017 | Biowissenschaften Chemie

Biokunststoffe könnten auch in Traktoren die Richtung angeben

18.10.2017 | Messenachrichten

»ILIGHTS«-Studie gestartet: Licht soll Wohlbefinden von Schichtarbeitern verbessern

18.10.2017 | Energie und Elektrotechnik