Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laserlicht erzeugt synthetisches Gewebe für die regenerative Medizin

13.07.2011
Der Ersatz natürlichen Gewebes nach Verletzungen und Erkrankungen durch Implantate, die eine körpereigene Regeneration mit patienteneigenen Zellen ermöglicht, ist Ziel des Tissue Engineering.

Forschern des Fraunhofer-Instituts für Lasertechnik ILT und weiterer Fraunhofer-Institute ist es nun gelungen, mit einem speziellen Laserverfahren biomimetische Hybridstrukturen zu erzeugen, die als Basis solcher Stütz- und Implantatstrukturen dienen, in welche die Zellen anschließend möglichst effektiv einwachsen.


Test-Struktur, bestehend aus einer Polymer-Stützstruktur und einer Protein-Funktionsstruktur.
Fraunhofer-Institut für Lasertechnik ILT, Aachen


Bild 2: Kapillare aus künslichem, elastischem Polymer mit einem Durchmesser von 20 Mikrometern.
Fraunhofer-Institut für Lasertechnik ILT, Aachen

Ist Gewebe durch eine Erkrankung oder einen Unfall stark geschädigt oder sind Gewebeteile vollständig entfernt, kann der Körper sich oft nicht selbstständig regenerieren. Häufig steht für Transplantationen kein entsprechendes körpereigenes Material zur Verfügung. Deshalb fordern Mediziner zunehmend Gewebe-Implantate, die eine vollständige Regeneration ermöglichen.

Doch die derzeitigen künstlich erzeugten Implantate sind oft nicht genügend an die Umgebung im Körper des Patienten angepasst und sind somit als Gewebe-Ersatz nur bedingt geeignet. Ein Grund hierfür ist das fehlende Wissen darüber, wie genau Zellen auf eine dreidimensionale Umgebung reagieren. Forscher des Fraunhofer ILT haben nun in Kooperation mit weiteren Fraunhofer-Instituten ein Verfahren zur Erzeugung biomimetischer Stützstrukturen entwickelt, das so naturgetreu wie möglich dem körpereigenen Gewebe nachempfunden ist. So haben sie für Biologen eine wichtige Voraussetzung dafür geschaffen, in Zukunft Gewebe-Implantate zu generieren, die eine Zellbesiedelung und ein Einwachsen optimal erfolgen lassen. Dazu haben die Aachener Forscher das Verfahren des Rapid Prototyping auf körpereigene Materialien übertragen. Sie kombinieren organische Substanzen mit Polymeren und erzeugen dreidimensionale Strukturen, die für den Bau von künstlichem Gewebe geeignet sind.

Laserlicht verwandelt Flüssigkeit in 3D-Festkörper

Als Basis dienen den Forschern gelöste Proteine und Polymere, die gezielt mit Laserlicht bestrahlt werden und durch photolytische Wirkungen vernetzt werden. Dazu setzen sie eigens entwickelte Laseranlagen ein, bei denen mittels ultrakurzen Laserpulsen sogenannte Multiphotonen-Prozesse ausgelöst werden, die zu einer Polymerisierung im Volumen führen. Im Gegensatz zu konventionellen Prozessen werden am Fraunhofer-ILT neuartige, kostengünstige Mikrochiplaser mit Pulsdauern im Pikosekundenbereich verwendet, die das Verfahren für jedes Labor erschwinglich machen. Das A und O des Verfahrens sind die extrem kurzen Pulszeiten und die hohen Intensitäten des Laserstrahls. Die kurzen Pulszeiten führen dazu, dass das Material keine schädliche Erwärmung erfährt. Höchste Pulsleistungen im Megawattbereich führen dazu, dass im Laserfokus extrem viele Photonen in extrem kurzer Zeit eintreffen und dort einen nichtlinearen Effekt auslösen. Die Moleküle in der Flüssigkeit nehmen mehrere Photonen zugleich auf, so dass sich freie Radikale bilden, die eine chemische Reaktion zwischen den umgebenden Molekülen auslösen. Durch diese so genannte Multiphotonen-Polymerisation entstehen aus der Flüssigkeit heraus Festkörper. Die Anlage steuert die Position des Laserstrahls gemäß vorgegebener CAD-Daten durch ein Mikroskopobjektiv hindurch auf wenige hundert Nanometer genau so, dass nach und nach mikrometerfeine, stabile Volumenelemente von vernetztem Material entstehen.

»Wir können auf diese Weise Stützgerüste für Zellverbände mit einer Auflösung von circa einem Mikrometer direkt aus gelösten Proteinen und Polymeren exakt nach unserem Bauplan erzeugen«, erklärt Sascha Engelhardt, Projektleiter am Fraunhofer ILT. »Diese der Natur nachempfundenen Stützgerüste werden uns wertvolle Antworten auf viele offene Fragen geben können.« Dazu verwendet das Forscher-Team unterschiedliche körpereigene Eiweißstoffe, etwa Albumin, Kollagen oder Fibronektin. Da reine Proteinstrukturen jedoch nicht sehr formstabil sind, kombinieren die Aachener Forscher diese mit biokompatiblen Polymeren. Zunächst wird aus diesen Polymeren ein Stützgerüst generiert, das den in einem nachfolgenden Schritt hergestellten Proteinstrukturen Halt bietet. Durch dieses neue Verfahren können nun wesentlich stabilere Proteinstrukturen hergestellt werden.

Mediziner können in einem weiteren Schritt körpereigene Zellen auf das Gerüst säen. Die besiedelten Gerüste sollen schließlich im Körper des Patienten ein gutes Anwachsen des Implantats ermöglichen. Langfristiges Ziel ist es, mit Hilfe des Verfahrens nicht nur einzelne Zellverbände, sondern komplette künstliche, maßgeschneiderte Organe zu erzeugen. Für die Medizin wäre dies ein Riesenfortschritt!

Momentan arbeiten die ILT-Forscher daran, das Verfahren zu optimieren. Beispielsweise soll die Produktionsgeschwindigkeit durch die Kombination mit anderen Verfahren des Rapid Prototyping erhöht werden.

Schnelle Prozesse sind nötig, um eines Tages mit diesem Verfahren maßgeschneiderte Gerüste für synthetische Gewebe wirtschaftlich erzeugen zu können.

Ansprechpartner im Fraunhofer ILT
Für Fragen stehen Ihnen unsere Experten zur Verfügung:
Dipl.-Phys. Sascha Engelhardt
Biotechnik und Lasertherapie
Telefon +49 241 8906-605
sascha.engelhardt@ilt.fraunhofer.de
Dr.-Ing. Martin Wehner
Biotechnik und Lasertherapie
Telefon +49 241 8906-202
martin.wehner@ilt.fraunhofer.de
Fraunhofer-Institut für Lasertechnik ILT
Steinbachstraße 15
52074 Aachen
Tel. +49 241 8906-0
Fax. +49 241 8906-121

Axel Bauer | Fraunhofer-Institut
Weitere Informationen:
http://www.ilt.fraunhofer.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Welcher Scotch ist es?
25.07.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Teufelszwirn: Schmarotzer und dennoch Alarmüberträger bei Insektenbefall
25.07.2017 | Max-Planck-Institut für chemische Ökologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die turbulente Atmosphäre der Venus

25.07.2017 | Physik Astronomie

SEEDs – Intelligente Batterien mit zellinterner Sensorik

25.07.2017 | Energie und Elektrotechnik

Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

25.07.2017 | Physik Astronomie