Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Langsamer geht's schneller: Wie die Signalübertragung in Zellen von trägen Enzymen profitiert

28.02.2012
Ein Forschungsteam um Prof. Dr. Matthias Weiss, Universität Bayreuth, hat mittels Computersimulationen herausgefunden, wie enzymatische Reaktionen im Zellplasma durch anomale Diffusion gefördert werden. In den "Europhysics Letters" stellen die Wissenschaftler ihre Forschungsergebnisse vor.

Enzymatische Reaktionen sind von fundamentaler Bedeutung für lebende Zellen: Ein Enzym bindet an ein Protein, das dadurch eine chemische Veränderung erfährt und so in die Lage versetzt wird, eine für die Zelle lebenswichtige Funktion zu erfüllen. Oft ist das modifizierte Protein seinerseits ein Enzym, das nach seiner Veränderung weitere biochemische Reaktionen anstößt.

Ein prominentes Beispiel hierfür ist das Enzym MAP-Kinase (mitogen-activated protein kinase), das eine wichtige Funktion bei der Herstellung neuer Proteine innerhalb der Zelle hat. Es erfüllt diese Aufgabe nur, wenn es an zwei Stellen durch dasselbe Enzym verändert ("phosphoryliert") und dadurch aktiviert worden ist.

Aber nicht jedes Mal, wenn sich eine MAP-Kinase und ein aktivierendes Enzym im Zellplasma treffen, kommt es tatsächlich zu dieser doppelten enzymatischen Reaktion. In der Regel müssen die Partnermoleküle mehrere Anläufe unternehmen, bis die MAP-Kinase phosphoryliert ist. Erschwerend kommt hinzu, dass beide Molekülsorten nur in geringen Mengen im Zellplasma vorkommen. Wenn also die Partnermoleküle nach einem nicht erfolgreichen Versuch weit auseinanderdriften würden, könnte es sehr lange dauern, bis sich wieder eine Gelegenheit zur Phosphorylierung ergibt.

Wie kann die Zelle diese Abstände verkürzen und dafür sorgen, dass sich die MAP-Kinase und das aktivierende Enzym schnell wieder treffen? Wie ist gewährleistet, dass die Partnermoleküle auch nach mehreren missglückten Anläufen nahe beieinander bleiben, um einen weiteren Reaktionsversuch zu unternehmen? Diese Frage hat ein Forschungsteam um Prof. Dr. Matthias Weiss, Lehrstuhl für Experimentalphysik I an der Universität Bayreuth, jetzt durch Computersimulationen aufklären können.

Solange MAP-Kinase und aktivierendes Enzym auf Partnersuche sind, wandern sie ziellos im Zellplasma umher ("Diffusion"). Diese Diffusion verläuft, wie das Team von Prof. Weiss in den letzten Jahren experimentell zeigen konnte, meist anomal. Anomale Diffusion ist dadurch charakterisiert, dass – bildlich ausgedrückt – der Bewegungsdrang von Molekülen schnell erlahmt und sie lange Wege scheuen. Physikalisch gesprochen: Das Umfeld, in dem MAP-Kinase und aktivierendes Enzym zwecks Partnersuche unterwegs sind, wächst nicht proportional mit der Suchzeit an, sondern nur mit einer geringeren Potenz, z.B. mit der Quadratwurzel der Suchzeit. In den Bayreuther Experimenten wurde auch die Ursache dafür erkennbar. Weil sich im Zellplasma eine große Zahl von Makromolekülen auf engem Raum befindet, ist die Bewegungsfreiheit von Proteinen stark eingeschänkt.

Damit fördert die anomale Diffusion die Aktivierung der MAP-Kinase. Zwar dauert es zunächst relativ lange, bis sich zwei Partnermoleküle begegnen. Aber haben sie sich erst einmal gefunden, bleiben sie für lange Zeit in unmittelbarer Nähe zueinander – bis schließlich beide enzymatischen Reaktionen (Phosphorylierungen) erfolgt sind und die MAP-Kinase aktiviert ist. Die Computersimulationen zeigen dabei auch, dass die anomale Diffusion umso effizienter wirkt, je mehr aufeinanderfolgende Phosphorylierungen für die Aktivierung eines Enzyms nötig sind. Denn dann kommt es besonders auf ein schnelles Wiederfinden der Partner an.

"Die Aktivierung der MAP-Kinase ist nur ein Ausschnitt aus einer ganzen Kette von zellulären Prozessen, die in einer Kaskade aufeinanderfolgen", erklärt Prof. Dr. Matthias Weiss. So muss das Enyzm, das die MAP-Kinase aktivieren soll, seinerseits durch ein vorausgehendes Signal aktiviert werden. Auch hier – wie an vielen weiteren Stellen – kann die anomale Diffusion im Zellplasma ihre effizienzfördernde Wirkung entfalten. So kommt die anomale Diffusion letztlich der gesamten Kaskade von Prozessen zugute. Es ist paradoxerweise der Trägheit der Molekularbewegung zu verdanken, dass das Endsignal umso schneller im Zellkern ankommt.

Veröffentlichung:

Marcel Hellmann, Dieter W. Heermann and Matthias Weiss,
Enhancing phosphorylation cascades by anomalous diffusion,
in: EPL (Europhysics Letters), Vol. 97, Number 5
DOI: 10.1209/0295-5075/97/58004
Kontaktadresse für weitere Informationen:
Prof. Dr. Matthias Weiss
Lehrstuhl für Experimentalphysik I
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49 (0)921 55-2500 und -2501
E-Mail: matthias.weiss@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften