Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lang lebe der Lotus: Genom der sonderbaren Pflanze vollständig sequenziert

04.06.2013
Das älteste Samenkorn, das jemals zur Keimung gebracht worden ist, stammt von der Indischen Lotusblume (Nelumbo nucifera) und war 1300 Jahre alt. Jetzt ist das Genom dieser Pflanze entschlüsselt und Forscher hoffen, darin auf „Jungbrunnen“-Gene zu stoßen.

Die indische Lotusblume wird in asiatischen Kulturen für viele Dinge geschätzt. Ihre Wurzelknollen, Samen und Blätter dienen als Nahrungsmittel und nahezu alle Teile der Pflanze werden in der Naturheilkunde eingesetzt.


Warum überdauern Lotussamen Jahrtausende? (Quelle: © istockphoto.com / Hsing-Wen Hsu)

Ihr Anwendungsspektrum reicht von Durchfall bis Depression, von Herzproblemen bis Hodenkrebs. Hierzulande schätzt man vor allem die Selbstreinigungskraft der Lotusblätter, die das biologische Vorbild für selbstreinigende Fassadenfarbe und Autolacke waren.

Von besonderem Interesse für die Wissenschaftler ist die Langlebigkeit der Lotussamen. Anfang der 1990er Jahre fanden sie einen 1300 Jahre alten Lotussamen, der nichts an seiner Keimfähigkeit eingebüßt hatte. Dass das kein Einzelfall war, bestätigte sich einige Jahre später, als die Forscher mit Hilfe von einheimischen Bauern in der Provinz Liaoning in China etwa einhundert Lotussamen sammelten, die alle zwischen 450 und 500 Jahre alt waren. Achtzig Prozent davon keimten im Labor aus. Die Samen vieler anderer Pflanzen bleiben meist nicht länger als zwanzig Jahre lebensfähig.

Jetzt ist es den Wissenschaftlern gelungen, das Genom der Lotuspflanze zu entschlüsseln. Die schätzungsweise 27.000 Gene liegen Buchstabe für Buchstabe vor Ihnen. Dabei fiel den Forschern auf, dass das Erbgut der Lotusblume sich nur sehr gemächlich verändert. Die Mutationsrate der DNA ist etwa dreißig Prozent langsamer als die der Weintraube, deren Genom bisher als das am langsamsten evolvierende galt.

Der Lotus: Ein genetisches Fossil?

Aus diesem Grund ist der Lotus auch so interessant für Evolutionsbiologen. Bereits vor mehr als 125 Millionen Jahren hat sich der Lotus von dem gemeinsamen Vorfahren der Eudikotyledonen abgespaltet und eigenständig entwickelt. Eigenständig, aber eben sehr langsam. Das zeigt der hohe Anteil an ursprünglichen Genen, die im Lotusgenom enthalten sind. In schneller evolvierenden Pflanzen sind diese längst verloren gegangen. Aufgrund der großen Ähnlichkeit zum gemeinsamen Vorfahr erhoffen Forscher sich einen tieferen Einblick in die Entwicklungsgeschichte der Blütenpflanzen.

Als Ursache für die besonders langsame Evolution gibt es mehrere Vermutungen: Zum könnte die Langlebigkeit der Samen dazu beigetragen haben, dass der Lotus evolutionär von den anderen Blütenpflanzen so weit abgeschlagen ist. ­­ Da die Samen extrem lange keimfähig bleiben, könnte es passieren, dass sich zwei Lotuspflanzen kreuzen, die aus ganz unterschiedlich alten Samen entstanden sind. Die neu aufgetretenen Mutationen in der jüngeren Pflanze werden bei so einer Kreuzung gleich wieder von den alten, unveränderten Genen überdeckt. Evolution? Fehlanzeige.

Auch die asexuelle, vegetative Vermehrung über Rhizome, die z.B. von Erdbeeren und Kartoffeln bekannt ist, wirkt einer Entwicklung neuer Eigenschaften entgegen. Bei der Bildung von Ablegern, Knollen oder Rhizomen sind die neuen Pflanzen einfach nur Klone der Elternpflanze und eine Vermischung und Neukombination des Erbguts findet nicht statt. Neue Eigenschaften entstehen so ebenfalls nicht.

Genomverdoppelungen als Spielwiese der Evolution
Was sich jedoch positiv auf die Evolution auswirkt, sind Genomduplikationen. Die sind bei Pflanzen häufig anzutreffen. Viele bekannte Kulturarten wie Weizen, Kartoffel und Baumwolle haben ihre Genome im Laufe der Evolution verdoppelt oder verdreifacht und sogar mit Genomen anderer Arten kombiniert.

Die Pflanzen nutzen die mehrfach Kopien der Gene als Spielwiese für Veränderungen. Günstige Mutationen werden beibehalten und verbessern die Überlebenschancen. Schädliche Mutationen können gefahrlos gelöscht werden, schließlich ist eine Sicherheitskopie des gleichen Gens noch vorhanden. Auf diese Weise verschwindet nach und nach ein Großteil der doppelten Gene wieder. Nur bei Lotus sind auch nach 65 Millionen Jahren noch fast vierzig Prozent davon vorhanden. Ein Paradies für Forscher, die herausfinden wollen, wie sich Gene entwickeln und neue Eigenschaften annehmen.

Was mutiert wird im Lotusgenom schnell wieder repariert

Eine weitere Ursache, warum gerade der Lotus im Vergleich zu anderen Blütenpflanzen im Schneckentempo evolviert, sehen die Wissenschaftler in den besonders effektiven DNA-Reparaturmechanismen der Lotuspflanze. Die Reparaturenzyme arbeiten anscheinend so effektiv, dass Mutationen ausradiert werden, bevor sie sich als dauerhafte Erbgutveränderung niederschlagen können.

Daraus könnten sich auch neue medizinische Anwendungsmöglichkeiten ergeben. Denn im Erbgut jedes Lebewesens treten ständig Fehler auf. DNA-Stränge zerbrechen und müssen geflickt werden, Basen werden versehentlich falsch eingebaut oder gar gelöscht. Solche Mutationen können harmlos sein und unbemerkt bleiben oder aber zu unkontrolliertem Zellwachstum und damit zu Krebs führen. Wenn Menschen so gute Reparaturenzyme hätten wie die Lotuspflanze, dann wären schädliche Mutationen in unserer DNA seltener.

„Zu verstehen, wie der Reparaturmechanismus der Lotuspflanzen funktioniert und welche möglichen Anwendungen für die menschliche Gesundheit sich daraus ergeben, ist im Prinzip ein dreistufiger Prozess“, erklärt Crysten Blaby-Haas, eine der Autorinnen der Studie. Die Genomsequenzierung war nur der Erste. Die richtigen Gene zu finden und therapeutisch anzuwenden sind die nächsten Herausforderungen.

Der Startschuss für die Suche nach den Jungbrunnen-Genen ist gefallen

Der indische Lotus ist die erste echte Wasserpflanze, deren Genom bisher sequenziert wurde. Die Genomanalyse der Forscher liefert auch erste Hinweise, dass der Lotus bestimmte Genfamilien als besondere Anpassung an das Leben im Wasser erweitert hat. Einige von ihnen sind beispielsweise für die Ausbildung der wasserabweisenden Wachsschicht auf den Blättern verantwortlich. Andere ermöglichen es der Pflanze in nährstoffarmen Gewässern zu wachsen.

Das entschlüsselte Lotusgenom soll vor allem helfen, Gene aufzuspüren, die für die Langlebigkeit der Samen und den besonders wirksamen Reparaturmechanismus verantwortlich sind. Auch über weitere, agronomisch wichtige Eigenschaften wie die Qualität und den Ertrag der Rhizome, Nährstoffgehalt und Größe der Samen, Blütenarchitektur und Blütezeit soll das Lotusgenom Aufschluss geben. Die Suche nach den „Jungbrunnen“-Genen hat begonnen.
Quelle:

Ming, R. et al. (2013): Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.). In Genome-Biology, (Online-Veröffentlichung, 10. Mai 2013). Doi: 10.1186/gb-2013-14-5-r41

Ming, R. et al. | Pflanzenforschung.de
Weitere Informationen:
http://www.pflanzenforschung.de/index.php?cID=8955

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie