Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein lang ersehnter Durchbruch: Forscher entschlüsseln Struktur eines Schlüsselproteins

10.05.2013
Wissenschaftler am Institut für Medizinische Physik und Biophysik (IMPB) der Charité - Universitätsmedizin Berlin haben den molekularen Mechanismus aufgeklärt, durch den ein bestimmtes Protein (Arrestin) für die Interaktion mit seinem Rezeptor aktiviert wird.

Dieser gehört zu der Gruppe der sogenannten G-Protein-gekoppelten Rezeptoren (GPCR). Über diese Rezeptoren wirken mehr als ein Drittel aller heute verschriebenen Arzneimittel.


Schematische Darstellung der überlagerten Proteinstrukturen von inaktiven Arrestin (grau/grün) und prä-aktiverten p44 (orange/blau). Beide Domänen des Proteins verdrehen sich um ca. 20° gegeneinander vom inaktiven in den prä-aktiverten Zustand.

Sie übernehmen im gesamten Organismus die Steuerung sensorischer und physiologischer Antworten auf einen Reiz, beispielsweise beim Sehen und Schmecken, der Herzfrequenz oder auch der embryonalen Entwicklung. Die Studie ist in der aktuellen Ausgabe der Fachzeitschrift Nature* publiziert.

GPCRs sind in die Zellmembran eingebaut und können so Informationen von außen nach innen weiterleiten. Der Teil außerhalb der Zelle ist jeweils für einen spezifischen Reiz empfänglich – etwa Licht oder die Ankunft eines Hormonmoleküls. Kommt der passende Reiz an, verändert sich die Struktur des gesamten Rezeptormoleküls, und ein Protein (G-Protein) kann an den Rezeptor gebunden werden. Diese Bindung löst daraufhin einen bestimmten Vorgang in der Zelle aus.
Im Normalfall formt sich der Rezeptor nach kurzer Zeit wieder zurück und ist bereit für den nächsten Reiz. Durch die Aktivierung von Arrestin wird der Rezeptor am Ende der Reizantwort dann wieder ausgeschaltet. Obwohl die molekulare Struktur von inaktivem visuellen Arrestin seit 15 Jahren bekannt ist, blieb der Mechanismus der Aktivierung bis heute im Unklaren.

Die Arbeit der Wissenschaftler konzentriert sich auf die Röntgen-Kristallstruktur einer prä-aktivierten Form des Arrestins, des sogenannten p44-Proteins. Die Ergebnisse wurden durch fluoreszenz-spektroskopische Methoden verifiziert. Durch dieses Verfahren lassen sich Konformationsänderungen von Proteinen beobachten. Es zeigte sich, dass die Molekularstruktur des p44-Proteins völlig verschieden ist von der des Arrestins im inaktiven Zustand. In der prä-aktivierten Form sind die beiden Domänen des Proteins gegeneinander um circa 20 Grad verdreht. Die Struktur erlaubt detaillierte Schlussfolgerungen bezüglich des Aktivierungsmechanismus von Arrestinen.

„Für uns ist besonders spannend, dass unsere Publikation gleichzeitig mit einer Arbeit von Brain Kobilka and Robert Lefkowitz erscheint, die Träger des Nobelpreises für Chemie 2012 sind. Beide Arbeitsgruppen haben durch ähnliche Methoden die Prä-Aktivierung unterschiedlicher Formen des Arrestins untersucht und strukturell dargestellt. Die Proteinstrukturen sind einander sehr ähnlich und validieren sich gegenseitig“, sagt Dr. Martha Sommer, Leiterin der Arbeitsgruppe Arrestine am IMPB und eine der korrespondierenden Autoren der Studie.

Die vorliegende Publikation über das p44 ist bereits die siebte Nature-Veröffentlichung des IMPB seit 2008 und wurde unter Federführung des IMPB gemeinsam mit Kollegen aus Korea und Kanada durchgeführt. Prof. Klaus Peter Hofmann, ehemaliger Direktor des IMPB und Leiter der Arbeitsgruppe Rezeptorforschung, Dr. Patrick Scheerer, Leiter der Arbeitsgruppe Proteinstrukturanalyse und Dr. Martha Sommer konnten so verschiedene Forschungsansätze am IMPB in einer gemeinsamen jahrelangen Anstrengung zusammenführen.
Kim YJ, Hofmann KP, Ernst OP, Scheerer P, Choe HW, Sommer ME. Crystal structure of pre-activated arrestin p44. Nature. 2013 May 2;497(7447):142-6. doi: 10.1038/nature12133. Epub 2013 Apr 21.

Kontakt:
Dr. Martha Sommer
Institut für Medizinische Physik und Biophysik
AG Arrestin
Charité - Universitätsmedizin Berlin
t: +49 30 450 524 200
Dr. Patrick Scheerer
Institut für Medizinische Physik und Biophysik
AG Protein X-ray Crystallography
Charité - Universitätsmedizin Berlin
t: +49 30 450 524 178

Dr. Julia Biederlack | idw
Weitere Informationen:
http://www.charite.de
http://biophysik.charite.de/

Weitere Berichte zu: Aktivierung Arrestin G-Protein Protein Rezeptor Rezeptormolekül Schlüsselprotein Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Das Geheimnis der Sojabohne: Mainzer Forscher untersuchen Ölkörperchen in Sojabohnen
20.06.2018 | Max-Planck-Institut für Polymerforschung

nachricht Schlüsselmolekül des Alterns entdeckt
20.06.2018 | Deutsches Krebsforschungszentrum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungsnachrichten

Breitbandservices von DNS:NET erweitert

20.06.2018 | Unternehmensmeldung

Mit Parasiten infizierte Stichlinge beeinflussen Verhalten gesunder Artgenossen

20.06.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics