Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein lang ersehnter Durchbruch: Forscher entschlüsseln Struktur eines Schlüsselproteins

10.05.2013
Wissenschaftler am Institut für Medizinische Physik und Biophysik (IMPB) der Charité - Universitätsmedizin Berlin haben den molekularen Mechanismus aufgeklärt, durch den ein bestimmtes Protein (Arrestin) für die Interaktion mit seinem Rezeptor aktiviert wird.

Dieser gehört zu der Gruppe der sogenannten G-Protein-gekoppelten Rezeptoren (GPCR). Über diese Rezeptoren wirken mehr als ein Drittel aller heute verschriebenen Arzneimittel.


Schematische Darstellung der überlagerten Proteinstrukturen von inaktiven Arrestin (grau/grün) und prä-aktiverten p44 (orange/blau). Beide Domänen des Proteins verdrehen sich um ca. 20° gegeneinander vom inaktiven in den prä-aktiverten Zustand.

Sie übernehmen im gesamten Organismus die Steuerung sensorischer und physiologischer Antworten auf einen Reiz, beispielsweise beim Sehen und Schmecken, der Herzfrequenz oder auch der embryonalen Entwicklung. Die Studie ist in der aktuellen Ausgabe der Fachzeitschrift Nature* publiziert.

GPCRs sind in die Zellmembran eingebaut und können so Informationen von außen nach innen weiterleiten. Der Teil außerhalb der Zelle ist jeweils für einen spezifischen Reiz empfänglich – etwa Licht oder die Ankunft eines Hormonmoleküls. Kommt der passende Reiz an, verändert sich die Struktur des gesamten Rezeptormoleküls, und ein Protein (G-Protein) kann an den Rezeptor gebunden werden. Diese Bindung löst daraufhin einen bestimmten Vorgang in der Zelle aus.
Im Normalfall formt sich der Rezeptor nach kurzer Zeit wieder zurück und ist bereit für den nächsten Reiz. Durch die Aktivierung von Arrestin wird der Rezeptor am Ende der Reizantwort dann wieder ausgeschaltet. Obwohl die molekulare Struktur von inaktivem visuellen Arrestin seit 15 Jahren bekannt ist, blieb der Mechanismus der Aktivierung bis heute im Unklaren.

Die Arbeit der Wissenschaftler konzentriert sich auf die Röntgen-Kristallstruktur einer prä-aktivierten Form des Arrestins, des sogenannten p44-Proteins. Die Ergebnisse wurden durch fluoreszenz-spektroskopische Methoden verifiziert. Durch dieses Verfahren lassen sich Konformationsänderungen von Proteinen beobachten. Es zeigte sich, dass die Molekularstruktur des p44-Proteins völlig verschieden ist von der des Arrestins im inaktiven Zustand. In der prä-aktivierten Form sind die beiden Domänen des Proteins gegeneinander um circa 20 Grad verdreht. Die Struktur erlaubt detaillierte Schlussfolgerungen bezüglich des Aktivierungsmechanismus von Arrestinen.

„Für uns ist besonders spannend, dass unsere Publikation gleichzeitig mit einer Arbeit von Brain Kobilka and Robert Lefkowitz erscheint, die Träger des Nobelpreises für Chemie 2012 sind. Beide Arbeitsgruppen haben durch ähnliche Methoden die Prä-Aktivierung unterschiedlicher Formen des Arrestins untersucht und strukturell dargestellt. Die Proteinstrukturen sind einander sehr ähnlich und validieren sich gegenseitig“, sagt Dr. Martha Sommer, Leiterin der Arbeitsgruppe Arrestine am IMPB und eine der korrespondierenden Autoren der Studie.

Die vorliegende Publikation über das p44 ist bereits die siebte Nature-Veröffentlichung des IMPB seit 2008 und wurde unter Federführung des IMPB gemeinsam mit Kollegen aus Korea und Kanada durchgeführt. Prof. Klaus Peter Hofmann, ehemaliger Direktor des IMPB und Leiter der Arbeitsgruppe Rezeptorforschung, Dr. Patrick Scheerer, Leiter der Arbeitsgruppe Proteinstrukturanalyse und Dr. Martha Sommer konnten so verschiedene Forschungsansätze am IMPB in einer gemeinsamen jahrelangen Anstrengung zusammenführen.
Kim YJ, Hofmann KP, Ernst OP, Scheerer P, Choe HW, Sommer ME. Crystal structure of pre-activated arrestin p44. Nature. 2013 May 2;497(7447):142-6. doi: 10.1038/nature12133. Epub 2013 Apr 21.

Kontakt:
Dr. Martha Sommer
Institut für Medizinische Physik und Biophysik
AG Arrestin
Charité - Universitätsmedizin Berlin
t: +49 30 450 524 200
Dr. Patrick Scheerer
Institut für Medizinische Physik und Biophysik
AG Protein X-ray Crystallography
Charité - Universitätsmedizin Berlin
t: +49 30 450 524 178

Dr. Julia Biederlack | idw
Weitere Informationen:
http://www.charite.de
http://biophysik.charite.de/

Weitere Berichte zu: Aktivierung Arrestin G-Protein Protein Rezeptor Rezeptormolekül Schlüsselprotein Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten