Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lamas und Alpakas im Dienste der Forschung

14.05.2018

Proteine spielen bei vielen lebenswichtigen Prozessen eine entscheidende Rolle. Um mehr über die Funktion solcher Eiweißstoffe zu erfahren, würden Forscher sie gerne gezielt ausschalten oder modifizieren. Dann könnte man an den Folgen ablesen, für was das Protein zuständig ist. Dr. Florian Schmidt, Leiter einer Emmy Noether-Gruppe am Institut für Angeborene Immunität der Universität Bonn, entwickelt eine Methode weiter, mit der sich solche Eiweiß-Hemmstoffe maßschneidern lassen. Alpakas und Lamas helfen ihm dabei: Sie produzieren einzigartige Antikörper in ihrem Blut, die die Grundlage bilden.

Friedlich grasen mehrere Alpakas und Lamas auf der sattgrünen Wiese in der Nähe von Bonn. Die aus den südamerikanischen Anden stammenden Kamelide sind auch hierzulande beliebt – wegen ihrer Sanftmut und ihrer Wolle. Dr. Florian Schmidt vom Institut für Angeborene Immunität der Universität Bonn verfolgt jedoch ganz andere Absichten: Ein Teil der Herde steht im Dienste seiner Forschung.


Dr. Florian Schmidt vom Institut für Angeborene Immunität der Universität Bonn mit einem Lama.

© Foto: Volker Lannert/Uni Bonn

„Wir immunisieren die Alpakas und Lamas, weil sie ganz spezielle Antikörper herstellen, die wir für unsere Forschung brauchen“, sagt er. Der Biochemiker bereitet in seinem Labor ein bestimmtes Protein (Antigen) vor, das von einer Tierärztin ganz ähnlich einer Impfung in die Lamas und Alpakas gespritzt wird. Spezialisierte Zellen des Immunsystems, so genannte B-Lymphozyten, produzieren daraufhin diese besonderen Antikörper, die es bei keiner anderen Tiergruppe gibt.

Aus Blutproben der behandelten Tiere wird dann im Labor die genetische Information für die einzigartigen Antikörper gewonnen. Auf ihren minimalen Bestandteil reduziert, können sie als sogenannte Nanobodies hergestellt werden, die zehn Mal kleiner sind als normale Antikörper.

„Mit den Nanobodies können wir sehr spezifisch Zielstrukturen in der Immunologie visualisieren oder Proteine in ihrer Funktion stören“, berichtet der Biochemiker, der eine Emmy Noether-Nachwuchsgruppe leitet. Um die Rolle eines Proteins in lebenden Zellen besser zu verstehen, versuchen Forscher einzelne dieser Eiweiße zu hemmen oder auch zu aktivieren, um Rückschlüsse auf die Funktion und Arbeitsweise des Proteins ziehen zu können. „Das funktioniert mit herkömmlichen Methoden aber nur in einem Bruchteil der Versuche“, berichtet Schmidt.

Der Biochemiker entwickelt maßgeschneiderte Hemmstoffe

Der Biochemiker arbeitet deshalb an einem neuen Ansatz, solche Hemmstoffe maßgeschneidert für die unterschiedlichen Zwecke herzustellen. Damit will er untersuchen, wie Entzündungsreaktionen, die bei vielen verbreiteten Erkrankungen wie Arteriosklerose oder Schlaganfall auftreten, auf molekularer Ebene reguliert werden. Darüber hinaus möchte er die „Steuerzentrale“ des Immunsystems ausfindig machen, die bei einer Virusinfektion auftretende Entzündung koordiniert.

Mit den aus den Alpakas und Lamas stammenden Nanobodies hat er bereits unter Beweis gestellt, dass das gezielte Ausschalten von bestimmten Proteinen möglich ist. Sind etwa für die Vermehrung von Viren wichtige Proteine blockiert, kann dadurch die Ausbreitung der Erreger verhindert werden. Schmidt feilt an vielversprechenden Methoden, wie sich Nanobodies als Proteinhemmer maßschneidern lassen: „Auf diese Weise ließen sich Proteinwerkzeuge generieren, die es erlauben, gezielt in Signalwege des Immunsystems einzugreifen.“

Dies könnte nicht nur der Grundlagenforschung zu Gute kommen, sondern auch neue Ansatzpunkte für Therapien aufzeigen. Inzwischen nutzen Wissenschaftler aus unterschiedlichen Disziplinen für verschiedene Zwecke die Proteinblocker von Schmidts Team. „In Form einer zentralen Laboreinheit, Core Facility genannt, werden wir in Zukunft auch Nanobodies herstellen, die zur Krebsdiagnose, Krebstherapie oder für die Strukturanalyse von Proteinen verwendet werden“, blickt Schmidt in die Zukunft.

Leiter einer Emmy Noether-Forschungsgruppe

Dr. Florian Schmidt, geboren am 25. November 1981 in Bonn, leitet seit vergangenem Jahr am Institut für Angeborene Immunität der Universität Bonn eine eigene Forschungsgruppe, die von der Deutschen Forschungsgemeinschaft (DFG) im Emmy Noether-Programm gefördert wird. Herausragende Forscher erhalten damit die Möglichkeit, sich durch die eigenverantwortliche Leitung der Nachwuchsgruppe über einen Zeitraum von sechs Jahren für eine Hochschulprofessur zu qualifizieren. Nach einem Biochemiestudium an der TU München promovierte Schmidt an der ETH Zürich (Schweiz). Dort und am Whitehead Institute/MIT, Cambridge (USA) arbeitete er anschließend als Postdoktorand, bis er an die Universität Bonn kam. Schmidt ist Mitglied im Exzellenzcluster „ImmunoSensation: das Immunsystem als Sinnesorgan“ der Medizinischen Fakultät der Universität Bonn.

Kontakt:

Dr. Florian I. Schmidt
Emmy Noether-Gruppenleiter
Institut für Angeborene Immunität
Universität Bonn
Tel. 0228/28751124
E-Mail: fschmidt@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Licht zur Herstellung energiereicher Chemikalien nutzen
22.05.2018 | Friedrich-Schiller-Universität Jena

nachricht Junger Embryo verspeist gefährliche Zelle
22.05.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics