Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kuschelhormon wirkt schmerzlindernd

04.03.2016

Max-Planck-Forscher entdecken eine neue Wirkung von Oxytocin

Manchmal reichen kleine Moleküle aus, um unsere Stimmung oder auch den Stoffwechsel zu verändern: eines wie Oxytocin, das an der Entstehung von Gefühlen wie Vertrauen und Liebe beteiligt ist. Das Hormon wird ausschließlich im Gehirn gebildet und unter anderem über die Hirnanhangsdrüse ins Blut abgegeben.


Eine kleine Gruppe Oxytocin-produzierender Nervenzellen (rot) koordiniert die Freigabe von Oxytocin über Blut und Rückenmark.

Eliava et al., 2016

Bislang war unbekannt, warum diese Oxytocin-produzierenden Nervenzellen mit dem Hirnstamm und dem Rückenmark verknüpft sind. Forscher des Max-Planck-Instituts für medizinische Forschung in Heidelberg haben nun eine kleine Population an Nervenzellen entdeckt, die die Ausschüttung von Oxytocin ins Blut koordiniert und auch Zellen im Rückenmark anregt. Eine Reizung dieser Zellen erhöht den Oxytocinspiegel im Körper und hat eine schmerzlindernde Wirkung.

Schnelle Geburt: Die Bezeichnung des Hormons im Griechischen weist bereits auf eine wichtige Aufgabe hin: Bei der Geburt löst Oxytocin eine Kontraktion der Gebärmuttermuskulatur aus und leitet die Wehen ein. Außerdem ist es wichtig für eine starke Bindung zwischen Mutter und Kind sowie den Milcheinschuss der Mutter. Es reguliert zudem soziale Interaktionen im Allgemeinen. Es wird deswegen oft als Kuschelhormon bezeichnet

Das Hormon wird ausschließlich im Hypothalamus produziert. Oxytocin-bildende Nervenzellen werden in zwei unterschiedlich große Zelltypen unterteilt: Die großen Oxytocin-produzierenden Nervenzellen sind mit der Hirnanhangsdrüse verbunden, die Oxytocin über Kapillaren ins Blut abgibt. Die kleinen sind mit dem Hirnstamm und den tiefen Regionen des Rückenmarks verknüpft. Die Funktion dieser Verbindungen war bisher unklar. Es wurde vermutet, dass sie wichtig für die Kontrolle des Herz-Kreislauf-Systems oder auch der Atmung sein könnte.

Kleine Zellen, große Wirkung

Forscher des Max-Planck-Instituts für medizinische Forschung und ihre Kollegen aus anderen Ländern haben nun eine schmerzstillende Wirkung von Oxytocin entdeckt und festgestellt, dass die Freisetzung nicht nur über das Blut, sondern auch über das Rückenmark reguliert wird. „Wir konnten einen neuen Aspekt der Wirkung von Oxytocin nachweisen und haben zudem eine neue Subpopulation an kleinen Oxytocin-produzierenden Neuronen entdeckt“, erklärt der Direktor Peter Seeburg.

„Eine Gruppe des kleinen Zelltyps von etwa 30 Zellen sendet seine Nervenenden zu den großen Neuronen, wodurch Oxytocin über die Hirnanhangsdrüse ins Blut abgegeben als auch zum Rückenmark, wo Oxytocin als Neurotransmitter dient, um Nervenzellen zu hemmen." Diese Population koordiniert somit die Oxytocin-Freigabe. „Es ist faszinierend, dass die Koordination der Oxytocin-Wirkung von so wenigen Zellen abhängt“, so Seeburg.

Mit dem Griff in die optogenetische Werkzeugkiste konnten die Wissenschaftler die Population der kleinen Zellen im lebenden Versuchstier gezielt mit Licht stimulieren und dazu bringen, über beide Wege mehr Oxytocin auszuschütten. Ratten, die anschließend einen erhöhten Oxytocin Spiegel im Blut hatten, reagierten weniger stark auf die Berührung eines entzündeten Fußes. Das deutete auf eine geringere Schmerzempfindung hin. Eine Hemmung der Oxytocinwirkung erhöhte dagegen das Schmerzempfinden.

Die Forscher gehen davon aus, dass es die Untergruppe Oxytocin-produzierender Zellen auch im menschlichen Gehirn gibt. „Vermutlich ist das menschliche Oxytocin-System jedoch komplexer und besteht aus mehr als 30 Zellen“, erklärt Seeburg. Die Funktion dieser Zellen lässt sich im Menschen zudem nur schwer untersuchen. Trotzdem könnten die Erkenntnisse ein neuer Ansatz für die Entwicklung von Schmerztherapien sein.

Originalpublikation:
Marina Eliava , Meggane Melchior , H. Sophie Knobloch-Bollmann, Jérôme Wahis, Miriam da Silva Gouveia, Yan Tang , Alexandru Cristian, Ciobanu , Rodrigo Triana del Rio, Lena C. Roth , Ferdinand Althammer,Virginie Chavant , Yannick Goumon , Tim Gruber, Nathalie Petit-Demoulière, Marta Busnelli, Bice Chini , Linette L. Tan, Mariela Mitre, Robert C. Froemke, Moses V. Chao, Günter Giese , Rolf Sprengel , Rohini Kuner , Pierrick Poisbeau , Peter H. Seeburg , Ron Stoop , Alexandre Charlet and Valery Grinevich
A new population of parvocellular oxytocin neurons controlling magnocellular neuron activity and inflammatory pain processing
Neuron, 4 März 2016 (DOI: 10.1016/j.neuron.2016.01.041)

Ansprechpartner:
Prof. Dr. Peter H. Seeburg
Max-Planck-Institut für medizinische Forschung, Heidelberg
Telefon:+49 6221 486-495Fax:+49 6221 486-110
E-Mail:
seeburg@mpimf-heidelberg.mpg.de

Prof. Dr. Peter H. Seeburg | Max-Planck-Institut für medizinische Forschung, Heidelberg
Weitere Informationen:
http://www.mpg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie