Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kurzzeitgedächtnis beruht auf synchronisierten Gehirnschwingungen

31.01.2012
Wissenschaftler haben entschlüsselt, wie verschiedene Gehirnregionen während des Kurzzeitgedächtnisses miteinander kooperieren

Sich kurzfristig an etwas zu erinnern, ist eine scheinbar einfache und alltägliche Aufgabe. Wir nutzen unser Kurzzeitgedächtnis, wenn wir uns eine neue Telefonnummer merken müssen, wenn wir nichts zu schreiben haben oder wenn wir das schöne Kleid, das wir gerade im Schaufenster bewundert haben, nun im Laden suchen.


Ein Affe muss eine klassische Gedächtnisaufgabe lösen: dem Tier werden kurz hintereinander zwei Bilder gezeigt und dieses musst dann angeben, ob das zweite Bild dem ersten entspricht oder nicht. Stefanie Liebe/Max-Planck-Institut für biologische Kybernetik


In jedem der beiden Gehirnregionen (IPF und V4) zeigt die Hirnaktivität starke Schwingungen in einem bestimmten Frequenzbereich, auch als das Theta-Band bekannt. Stefanie Liebe/Max-Planck-Institut für biologische Kybernetik

Doch trotz der scheinbaren Einfachheit ist das Kurzzeitgedächtnis ein komplexer kognitiver Vorgang, der die Beteiligung von mehreren Hirnregionen benötigt. Ob und wie die verschiedenen Regionen während der Informationsspeicherung zusammen arbeiten, blieb bisher jedoch unklar. Forscher vom Max-Planck-Institut für biologische Kybernetik in Tübingen haben nun herausgefunden, dass elektrische Schwingungen zwischen verschiedenen Gehirnregionen entscheidend sind, um sich über einen kurzen Zeitraum hinweg an etwas Gesehenes zu erinnern.

Es ist bekannt, dass die Regionen im vorderen Teil des Gehirns am Kurzzeitgedächtnis beteiligt sind, während die Verarbeitung von Sehinformation in erster Linie im hinteren Teil des Gehirns erfolgt. Um sich jedoch erfolgreich über einen kurzen Zeitraum hinweg an etwas Gesehenes zu erinnern, müssen die entsprechenden Regionen miteinander kooperieren und die Informationen zusammenführen.

Wie das funktioniert, haben Wissenschaftler der Abteilung von Nikos Logothetis am Max-Planck-Institut für biologische Kybernetik in Tübingen untersucht. Sie haben die simultane elektrische Aktivität in einer visuellen Region und im frontalen Gehirnbereich in einer Wahrnehmungsstudie an Affen untersucht: Die Wissenschaftler zeigten den Tieren in kurzen Abständen identische oder unterschiedliche Bilder und zeichneten dabei die Gehirnaktivität auf. Die Affen mussten dann angeben, ob das zweite Bild dem ersten entsprach.

Die Wissenschaftler beobachteten, dass die Hirnaktivität in jeder der beiden Gehirnregionen durch oszillatorische Schwingungen in einem als das Theta-Band bezeichneten Frequenzbereich gekennzeichnet war. Interessant ist, dass diese Schwingungen nicht unabhängig voneinander auftreten, sondern synchron: „Es ist, als ob sich in den beiden Bereichen je eine Drehtür befindet“, erklärt Stefanie Liebe, die Erstautorin der Studie, die sie zusammen mit Gregor Rainer und in Kooperation mit Gregor Hörzer von der Technischen Universität Graz durchgeführt hat. „Während das Gedächtnis arbeitet, drehen sich beide Türen im Takt, und erlauben dadurch einen effektiveren Informationsaustausch.“ Je stärker die Regionen synchron aktiv waren, desto besser konnten sich die Tiere an das erste Bild erinnern. So waren die Wissenschaftler in der Lage, eine direkte Beziehung zwischen ihren Beobachtungen im Gehirn und der Leistung der Tiere zu erkennen.

Die Studie zeigt, wie wichtig synchronisierte Gehirnschwingungen für die Kommunikation und die Interaktion der verschiedenen Gehirnregionen sind. Fast alle facettenreichen kognitiven Handlungen wie das visuelle Erkennen ergeben sich aus einem komplexen Zusammenspiel von spezialisierten neuronalen Netzen an verschiedenen Stellen im Gehirn. Wie sich Beziehungen zwischen solchen unterschiedlichen Standorten bilden und wie diese dazu beitragen, Informationen über externe und interne Ereignisse untereinander zu kommunizieren, um zu einer kohärenten Wahrnehmung beizutragen, ist noch weitgehend unbekannt.
Originalpublikation:
Stefanie Liebe, Gregor M Hoerzer, Nikos K Logothetis & Gregor Rainer (2012) Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance. Nature Neuroscience. doi: 10.1038/nn.3038

Ansprechpartner:
Dr. Stefanie Liebe
Max-Planck-Institute für biologische Kybernetik Tübingen
Tel.: +44 207 8375433
E-Mail: stefanie.liebe@tuebingen.mpg.de

Dr. Gregor Rainer
Université de Fribourg, Switzerland
Tel.: +41 263 008 689
E-Mail: gregor.rainer@unifr.ch

Stephanie Bertenbreiter (Presse- & Öffentlichkeitsarbeit)
Max-Planck-Institute für biologische Kybernetik Tübingen
Tel.: 07071 601-1792
E-Mail: presse-kyb@tuebingen.mpg.de

Das Max-Planck-Institut für biologische Kybernetik forscht an der Aufklärung von kognitiven Prozessen auf experimentellem, theoretischem und methodischem Gebiet. Es beschäftigt rund 300 Mitarbeiterinnen und Mitarbeiter aus über 40 Ländern und hat seinen Sitz auf dem Max-Planck-Campus in Tübingen. Das MPI für biologische Kybernetik ist eines der 80 Institute und Forschungseinrichtungen der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Stephanie Bertenbreiter | Max-Planck-Institut
Weitere Informationen:
http://tuebingen.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise