Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kurzzeitgedächtnis beruht auf synchronisierten Gehirnschwingungen

31.01.2012
Wissenschaftler haben entschlüsselt, wie verschiedene Gehirnregionen während des Kurzzeitgedächtnisses miteinander kooperieren

Sich kurzfristig an etwas zu erinnern, ist eine scheinbar einfache und alltägliche Aufgabe. Wir nutzen unser Kurzzeitgedächtnis, wenn wir uns eine neue Telefonnummer merken müssen, wenn wir nichts zu schreiben haben oder wenn wir das schöne Kleid, das wir gerade im Schaufenster bewundert haben, nun im Laden suchen.


Ein Affe muss eine klassische Gedächtnisaufgabe lösen: dem Tier werden kurz hintereinander zwei Bilder gezeigt und dieses musst dann angeben, ob das zweite Bild dem ersten entspricht oder nicht. Stefanie Liebe/Max-Planck-Institut für biologische Kybernetik


In jedem der beiden Gehirnregionen (IPF und V4) zeigt die Hirnaktivität starke Schwingungen in einem bestimmten Frequenzbereich, auch als das Theta-Band bekannt. Stefanie Liebe/Max-Planck-Institut für biologische Kybernetik

Doch trotz der scheinbaren Einfachheit ist das Kurzzeitgedächtnis ein komplexer kognitiver Vorgang, der die Beteiligung von mehreren Hirnregionen benötigt. Ob und wie die verschiedenen Regionen während der Informationsspeicherung zusammen arbeiten, blieb bisher jedoch unklar. Forscher vom Max-Planck-Institut für biologische Kybernetik in Tübingen haben nun herausgefunden, dass elektrische Schwingungen zwischen verschiedenen Gehirnregionen entscheidend sind, um sich über einen kurzen Zeitraum hinweg an etwas Gesehenes zu erinnern.

Es ist bekannt, dass die Regionen im vorderen Teil des Gehirns am Kurzzeitgedächtnis beteiligt sind, während die Verarbeitung von Sehinformation in erster Linie im hinteren Teil des Gehirns erfolgt. Um sich jedoch erfolgreich über einen kurzen Zeitraum hinweg an etwas Gesehenes zu erinnern, müssen die entsprechenden Regionen miteinander kooperieren und die Informationen zusammenführen.

Wie das funktioniert, haben Wissenschaftler der Abteilung von Nikos Logothetis am Max-Planck-Institut für biologische Kybernetik in Tübingen untersucht. Sie haben die simultane elektrische Aktivität in einer visuellen Region und im frontalen Gehirnbereich in einer Wahrnehmungsstudie an Affen untersucht: Die Wissenschaftler zeigten den Tieren in kurzen Abständen identische oder unterschiedliche Bilder und zeichneten dabei die Gehirnaktivität auf. Die Affen mussten dann angeben, ob das zweite Bild dem ersten entsprach.

Die Wissenschaftler beobachteten, dass die Hirnaktivität in jeder der beiden Gehirnregionen durch oszillatorische Schwingungen in einem als das Theta-Band bezeichneten Frequenzbereich gekennzeichnet war. Interessant ist, dass diese Schwingungen nicht unabhängig voneinander auftreten, sondern synchron: „Es ist, als ob sich in den beiden Bereichen je eine Drehtür befindet“, erklärt Stefanie Liebe, die Erstautorin der Studie, die sie zusammen mit Gregor Rainer und in Kooperation mit Gregor Hörzer von der Technischen Universität Graz durchgeführt hat. „Während das Gedächtnis arbeitet, drehen sich beide Türen im Takt, und erlauben dadurch einen effektiveren Informationsaustausch.“ Je stärker die Regionen synchron aktiv waren, desto besser konnten sich die Tiere an das erste Bild erinnern. So waren die Wissenschaftler in der Lage, eine direkte Beziehung zwischen ihren Beobachtungen im Gehirn und der Leistung der Tiere zu erkennen.

Die Studie zeigt, wie wichtig synchronisierte Gehirnschwingungen für die Kommunikation und die Interaktion der verschiedenen Gehirnregionen sind. Fast alle facettenreichen kognitiven Handlungen wie das visuelle Erkennen ergeben sich aus einem komplexen Zusammenspiel von spezialisierten neuronalen Netzen an verschiedenen Stellen im Gehirn. Wie sich Beziehungen zwischen solchen unterschiedlichen Standorten bilden und wie diese dazu beitragen, Informationen über externe und interne Ereignisse untereinander zu kommunizieren, um zu einer kohärenten Wahrnehmung beizutragen, ist noch weitgehend unbekannt.
Originalpublikation:
Stefanie Liebe, Gregor M Hoerzer, Nikos K Logothetis & Gregor Rainer (2012) Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance. Nature Neuroscience. doi: 10.1038/nn.3038

Ansprechpartner:
Dr. Stefanie Liebe
Max-Planck-Institute für biologische Kybernetik Tübingen
Tel.: +44 207 8375433
E-Mail: stefanie.liebe@tuebingen.mpg.de

Dr. Gregor Rainer
Université de Fribourg, Switzerland
Tel.: +41 263 008 689
E-Mail: gregor.rainer@unifr.ch

Stephanie Bertenbreiter (Presse- & Öffentlichkeitsarbeit)
Max-Planck-Institute für biologische Kybernetik Tübingen
Tel.: 07071 601-1792
E-Mail: presse-kyb@tuebingen.mpg.de

Das Max-Planck-Institut für biologische Kybernetik forscht an der Aufklärung von kognitiven Prozessen auf experimentellem, theoretischem und methodischem Gebiet. Es beschäftigt rund 300 Mitarbeiterinnen und Mitarbeiter aus über 40 Ländern und hat seinen Sitz auf dem Max-Planck-Campus in Tübingen. Das MPI für biologische Kybernetik ist eines der 80 Institute und Forschungseinrichtungen der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Stephanie Bertenbreiter | Max-Planck-Institut
Weitere Informationen:
http://tuebingen.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen
27.06.2017 | Johannes Gutenberg-Universität Mainz

nachricht Glykane als Biomarker für Krebs?
27.06.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

27.06.2017 | Biowissenschaften Chemie

Wave Trophy 2017: Doppelsieg für die beiden Teams von Phoenix Contact

27.06.2017 | Unternehmensmeldung

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie