Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kurzzeitgedächtnis beruht auf synchronisierten Gehirnschwingungen

31.01.2012
Wissenschaftler haben entschlüsselt, wie verschiedene Gehirnregionen während des Kurzzeitgedächtnisses miteinander kooperieren

Sich kurzfristig an etwas zu erinnern, ist eine scheinbar einfache und alltägliche Aufgabe. Wir nutzen unser Kurzzeitgedächtnis, wenn wir uns eine neue Telefonnummer merken müssen, wenn wir nichts zu schreiben haben oder wenn wir das schöne Kleid, das wir gerade im Schaufenster bewundert haben, nun im Laden suchen.


Ein Affe muss eine klassische Gedächtnisaufgabe lösen: dem Tier werden kurz hintereinander zwei Bilder gezeigt und dieses musst dann angeben, ob das zweite Bild dem ersten entspricht oder nicht. Stefanie Liebe/Max-Planck-Institut für biologische Kybernetik


In jedem der beiden Gehirnregionen (IPF und V4) zeigt die Hirnaktivität starke Schwingungen in einem bestimmten Frequenzbereich, auch als das Theta-Band bekannt. Stefanie Liebe/Max-Planck-Institut für biologische Kybernetik

Doch trotz der scheinbaren Einfachheit ist das Kurzzeitgedächtnis ein komplexer kognitiver Vorgang, der die Beteiligung von mehreren Hirnregionen benötigt. Ob und wie die verschiedenen Regionen während der Informationsspeicherung zusammen arbeiten, blieb bisher jedoch unklar. Forscher vom Max-Planck-Institut für biologische Kybernetik in Tübingen haben nun herausgefunden, dass elektrische Schwingungen zwischen verschiedenen Gehirnregionen entscheidend sind, um sich über einen kurzen Zeitraum hinweg an etwas Gesehenes zu erinnern.

Es ist bekannt, dass die Regionen im vorderen Teil des Gehirns am Kurzzeitgedächtnis beteiligt sind, während die Verarbeitung von Sehinformation in erster Linie im hinteren Teil des Gehirns erfolgt. Um sich jedoch erfolgreich über einen kurzen Zeitraum hinweg an etwas Gesehenes zu erinnern, müssen die entsprechenden Regionen miteinander kooperieren und die Informationen zusammenführen.

Wie das funktioniert, haben Wissenschaftler der Abteilung von Nikos Logothetis am Max-Planck-Institut für biologische Kybernetik in Tübingen untersucht. Sie haben die simultane elektrische Aktivität in einer visuellen Region und im frontalen Gehirnbereich in einer Wahrnehmungsstudie an Affen untersucht: Die Wissenschaftler zeigten den Tieren in kurzen Abständen identische oder unterschiedliche Bilder und zeichneten dabei die Gehirnaktivität auf. Die Affen mussten dann angeben, ob das zweite Bild dem ersten entsprach.

Die Wissenschaftler beobachteten, dass die Hirnaktivität in jeder der beiden Gehirnregionen durch oszillatorische Schwingungen in einem als das Theta-Band bezeichneten Frequenzbereich gekennzeichnet war. Interessant ist, dass diese Schwingungen nicht unabhängig voneinander auftreten, sondern synchron: „Es ist, als ob sich in den beiden Bereichen je eine Drehtür befindet“, erklärt Stefanie Liebe, die Erstautorin der Studie, die sie zusammen mit Gregor Rainer und in Kooperation mit Gregor Hörzer von der Technischen Universität Graz durchgeführt hat. „Während das Gedächtnis arbeitet, drehen sich beide Türen im Takt, und erlauben dadurch einen effektiveren Informationsaustausch.“ Je stärker die Regionen synchron aktiv waren, desto besser konnten sich die Tiere an das erste Bild erinnern. So waren die Wissenschaftler in der Lage, eine direkte Beziehung zwischen ihren Beobachtungen im Gehirn und der Leistung der Tiere zu erkennen.

Die Studie zeigt, wie wichtig synchronisierte Gehirnschwingungen für die Kommunikation und die Interaktion der verschiedenen Gehirnregionen sind. Fast alle facettenreichen kognitiven Handlungen wie das visuelle Erkennen ergeben sich aus einem komplexen Zusammenspiel von spezialisierten neuronalen Netzen an verschiedenen Stellen im Gehirn. Wie sich Beziehungen zwischen solchen unterschiedlichen Standorten bilden und wie diese dazu beitragen, Informationen über externe und interne Ereignisse untereinander zu kommunizieren, um zu einer kohärenten Wahrnehmung beizutragen, ist noch weitgehend unbekannt.
Originalpublikation:
Stefanie Liebe, Gregor M Hoerzer, Nikos K Logothetis & Gregor Rainer (2012) Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance. Nature Neuroscience. doi: 10.1038/nn.3038

Ansprechpartner:
Dr. Stefanie Liebe
Max-Planck-Institute für biologische Kybernetik Tübingen
Tel.: +44 207 8375433
E-Mail: stefanie.liebe@tuebingen.mpg.de

Dr. Gregor Rainer
Université de Fribourg, Switzerland
Tel.: +41 263 008 689
E-Mail: gregor.rainer@unifr.ch

Stephanie Bertenbreiter (Presse- & Öffentlichkeitsarbeit)
Max-Planck-Institute für biologische Kybernetik Tübingen
Tel.: 07071 601-1792
E-Mail: presse-kyb@tuebingen.mpg.de

Das Max-Planck-Institut für biologische Kybernetik forscht an der Aufklärung von kognitiven Prozessen auf experimentellem, theoretischem und methodischem Gebiet. Es beschäftigt rund 300 Mitarbeiterinnen und Mitarbeiter aus über 40 Ländern und hat seinen Sitz auf dem Max-Planck-Campus in Tübingen. Das MPI für biologische Kybernetik ist eines der 80 Institute und Forschungseinrichtungen der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Stephanie Bertenbreiter | Max-Planck-Institut
Weitere Informationen:
http://tuebingen.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kieselalge in der Antarktis liest je nach Umweltbedingungen verschiedene Varianten seiner Gene ab
17.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht Proteinforschung: Der Computer als Mikroskop
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau