Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Künstlicher Blutmacher: EPO

15.10.2012
Erste Totalsynthese von Erythropoietin gelungen

"Blut ist ein ganz besonderer Saft" - im "Faust" legte schon Goethe diese Erkenntnis seinem Mephisto in den Mund. Wenn Blut ein besonderer Saft ist, muss Erythropoietin (EPO) ein ganz besonderes Molekül sein, denn es sorgt für die Bildung unserer roten Blutkörperchen. Amerikanischen Wissenschaftlern ist nach zehnjähriger intensiver Forschung nun erstmals gelungen, dieses besondere Molekül vollständig synthetisch herzustellen - ein bedeutender Meilenstein für das Gebiet der chemischen Synthese komplexer biologischer Moleküle.


Erythropoietin (EPO) - US-Forschern gelang nun erstmals die vollständige Synthese im Labor ohne Einsatz von Mikroorganismen.

(c) Wiley-VCH

Das Hormon EPO wird vor allem in der Niere gebildet. EPO bringt die Stammzellen im Knochenmark dazu, sich in Erythrozyten (rote Blutkörperchen) weiterzuentwickeln. Bei vermindertem Sauerstoffgehalt des Blutes wird die Biosynthese von EPO hochgefahren, sodass in der Folge mehr Erythrozyten entstehen. EPO ist ein wichtiges Medikament. So erhalten es Dialysepatienten, bei denen die Blutbildung infolge eines Nierenversagens gestört ist, und Krebspatienten nach aggressiven Chemo- und Radiotherapien. EPO wurde von schwarzen Schafen unter Radrennfahrern und anderen Sportlern missbraucht, um ihre Leistungsfähigkeit zu steigern.

Bisher konnte nur die Natur EPO herstellen. Der Wirkstoff muss biotechnologisch mithilfe von Mikroorganismen gewonnen werden. Nun erzielte das Team um Samuel J. Danishefsky vom Sloan-Kettering Institute for Cancer Research in New York endlich den Durchbruch und stellte EPO erstmals komplett im Labor her. Um dieses so komplexe Biomolekül zu synthetisieren, reichten klassische Proteinsynthese-Methoden nicht aus, um ihr Ziel zu erreichen, mussten die Forscher ausgeklügelte neue Synthesestrategien entwickeln.

EPO ist eigentlich kein einzelnes Molekül, sondern eine ganze Familie von Glycoproteinen. Es besteht aus einem Proteinteil, der vier Kohlenhydrat-Domänen trägt. Der Protein-Teil ist immer der gleiche, auch die Stellen, an denen die Kohlenhydrat-Domänen hängen, ist konstant. In natürlichem EPO findet man jedoch eine breite Varianz verschiedener Kohlenhydrat-Domänen. Bisher war es nicht möglich, EPO als einheitliches Molekül rein zu gewinnen. Dank ihres vollsynthetischen Ansatzes ist es Danishelfsky und seinen Kollegen nun erstmals gelungen, "Wildtyp"-EPO in Reinform zugänglich zu machen, das die natürliche Aminsäuresequenz aufweist und vier Kohlenhydrat-Domänen mit genau definierter Struktur. Mit dieser Strategie lassen sich viele unterschiedliche Versionen des Moleküls mit verschiedenen Kohlenhydrat-Domänen herstellen und so deren Wirkung bei der Bildung von Blutzellen miteinander vergleichen.

Die Struktur des synthetischen EPO wurde mit massenspektroskopischen Untersuchungen belegt. Versuche mit Stammzellen zeigten zudem die Wirksamkeit des vollsynthetischen EPO: Nicht anders als die natürliche Sorte regt es Stammzellen dazu an, zu roten Blutkörpcherchen zu differenzieren.

Angewandte Chemie: Presseinfo 42/2012

Autor: Samuel J. Danishefsky, Sloan-Kettering Institute for Cancer Research, New York (USA), http://www.mskcc.org/research/lab/samuel-danishefsky

Angewandte Chemie, Permalink to the article: http://dx.doi.org/10.1002/ange.201206090

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.

Dr. Renate Hoer | GDCh
Weitere Informationen:
http://presse.angewandte.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Licht zur Herstellung energiereicher Chemikalien nutzen
22.05.2018 | Friedrich-Schiller-Universität Jena

nachricht Junger Embryo verspeist gefährliche Zelle
22.05.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics