Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Künstliche Zellen machen ihre ersten Schritte

05.09.2014

Mit wenigen Zutaten ist es dem Biophysiker Prof. Andreas Bausch und seinem Team an der Technischen Universität München (TUM) gelungen, ein minimalistisches Zellmodell zu verwirklichen, das sich von ganz alleine verformt und bewegt. Wie sie dieses Ziel umgesetzt haben, beschreiben sie in der aktuellen Ausgabe der Fachzeitschrift Science, die die Forschungsergebnisse als Titelgeschichte präsentiert.

Eine Zelle ist ein komplexes Gebilde mit einem ausgeklügelten Stoffwechsel. Ihr evolutionärer Vorfahr, die Urzelle, bestand hingegen nur aus einer Membran und wenigen Molekülen. Dabei handelte es sich um ein minimalistisches, aber bereits perfekt arbeitendes System.


Unterschiedlich geformte Vesikel/A variety of vesicle shapes. Bild: Christoph Hohmann, Nano Initiative Munich

Zurück zu den Ursprüngen der Zelle lautet daher auch das Motto der Gruppe von TUM-Professor Andreas Bausch, Mitglied des Exzellenzclusters Nanosystems Initiative Munich (NIM), und seiner internationalen Partner. Ihr Traum ist es, mit wenigen Grundzutaten ein einfaches Zellmodell mit einer bestimmten Funktion zu schaffen. Sie folgen damit dem Prinzip der Synthetischen Biologie, die einzelne Zellbausteine zu künstlichen biologischen Systemen mit neuen Eigenschaften zusammenfügt.

Die Vision der Biophysiker und ihrer internationalen Partner ist ein zellähnliches Modell mit einer biomechanischen Funktion. Es soll sich ohne Einfluss von außen von selber aktiv bewegen oder verformen. In ihrer aktuellen Veröffentlichung in Science präsentieren sie, wie ihnen die Umsetzung gelungen ist.

Die Wunderkugel

Das Modell der Biophysiker setzt sich zusammen aus einer Membranhülle, zwei verschiedenen Sorten von Biomolekülen und einer Art Kraftstoff. Die Hülle, auch als Vesikel bezeichnet, besteht aus einer zweischichtigen Lipidmembran, analog zu natürlichen Zellmembranen. Die Vesikel füllen die Wissenschaftler mit Mikrotubuli, einem röhrenförmigen Bestandteil des Zellskelettes, und mit Kinesinmolekülen. Kinesine dienen gewöhnlich in der Zelle als molekulare Motoren, die entlang der Mikrotubuli Zellbausteine transportieren. Im Experiment schieben diese Motoren die Röhrchen permanent aneinander entlang. Dafür benötigen Kinesine den Energieträger ATP, der im Versuchsansatz ebenfalls vorhanden ist.

Die Mikrotubuli-Röhrchen bilden im Experiment physikalisch gesehen direkt unter der Membran einen zweidimensionalen Flüssigkristall, der ständig in Bewegung ist. "Man kann sich diese Flüssigkristallschicht vorstellen wie Baumstämme, die auf einem See treiben", erklärt Felix Keber, Erstautor der Studie. "Wird es zu dicht, ordnen sie sich parallel an und können doch noch aneinander vorbei treiben."

Fehler auf Wanderschaft

Entscheidend für die Deformation der künstlichen Zellkonstruktion ist nun, dass der Flüssigkristall schon im Ruhezustand in Kugelform immer Fehlstellen bilden muss. Mathematiker erklären solche Phänomene mit dem Poincare-Hopf Theorem, oder anschaulich dem "Satz des Igels". Denn so wie man die Stacheln eines Igels nie bürsten kann, ohne dass eine kahle Stelle entsteht, können sich auch die Mikrotubuli nicht komplett gleichmäßig von innen an die Membranwand anlagern. Die Röhrchen stellen sich daher an einige Stellen leicht quer zueinander und dies in einer ganz bestimmten Geometrie. Da sich im Fall des Experiments der Münchner Wissenschaftler die Mikrotubuli durch die Aktivität der Kinesinmoleküle zudem ständig aneinander entlang bewegen, wandern auch die Fehlstellen. Erstaunlicherweise tun sie dies auf eine sehr gleichmäßige und periodische Art und Weise, oszillierend zwischen zwei definierten Anordnungen.

Stachelförmige Fortsätze

Solange der Vesikel eine Kugelform bildet, haben die Fehlstellen noch keinen Einfluss auf die äußere Form der Membran. Aber sobald ihm über Osmose Wasser entzogen wird, beginnt er sich durch die Bewegungen im Inneren zu verformen. Verliert der Vesikel mehr und mehr Wasser, so entstehen aus der überschüssigen Membran sogar stachelförmige Fortsätze, wie sie einige Einzeller zur Fortbewegung nutzen.

Dabei bilden sich faszinierend viele verschiedene Formen und Dynamiken. Was auf den ersten Blick beliebig erscheint, gehorcht in Wahrheit physikalischen Gesetzen. Und so ist es den internationalen Wissenschaftlern gelungen, einige Gesetzmäßigkeiten wie das periodische Verhalten der Vesikel zu entschlüsseln. Auf deren Grundlage lassen sich wiederum Vorhersagen für andere Systeme treffen.

"Mit unserem synthetischen biomolekularen Modell haben wir eine ganz neue Möglichkeit geschaffen, um minimale Zellmodelle zu entwickeln", erklärt Bausch. "Es ist ideal geeignet, um modular die Komplexität zu erhöhen und so kontrolliert zelluläre Prozesse, wie Zellmigration oder Zellteilung, nachzubauen. Dass das künstlich geschaffene System vollständig physikalisch beschrieben werden kann, nährt die Hoffnung, dass wir bei den nächsten Schritten auch die physikalischen Gesetzmäßigkeiten der vielfältigen Zellverformungen entdecken können."

Die Arbeit der Münchner Biophysiker entstand in Zusammenarbeit mit Kollegen der Brandeis University, Waltham, USA, der International School for Advanced Studies, Triest, Italien sowie der Syracuse University, New York, USA.

Publikation:
Topology and dynamics of active nematic vesicles.
Felix C. Keber, Etienne Loiseau, Tim Sanchez, Stephen J. DeCamp, Luca Giomi, Mark J. Bowick, M. Cristina Marchetti, Zvonimir Dogic and Andreas R. Bausch. Science, 5. September 2014.
DOI: 10.1126/science.1254784

Kontakt:
Prof. Andreas Bausch
Technische Universität München
Physik-Department
abausch@ph.tum.de
Tel: + 49 (89) 289-12408

Weitere Informationen:

https://mediatum.ub.tum.de/?id=1229826#1229826 Bilder zum Download

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designte Proteine gegen Muskelschwund
29.06.2017 | Universität Basel

nachricht Benzin und Chemikalien aus Pflanzenresten
29.06.2017 | Paul Scherrer Institut (PSI)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EUROSTARS-Projekt gestartet - mHealth-Lösung: time4you Forschungs- und Entwicklungspartner bei IMPACHS

28.06.2017 | Unternehmensmeldung

Proteine entdecken, zählen, katalogisieren

28.06.2017 | Biowissenschaften Chemie

Neue Scheinwerfer-Dimension: Volladaptive Lichtverteilung in Echtzeit

28.06.2017 | Automotive