Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Künstliche Zellen machen ihre ersten Schritte

05.09.2014

Mit wenigen Zutaten ist es dem Biophysiker Prof. Andreas Bausch und seinem Team an der Technischen Universität München (TUM) gelungen, ein minimalistisches Zellmodell zu verwirklichen, das sich von ganz alleine verformt und bewegt. Wie sie dieses Ziel umgesetzt haben, beschreiben sie in der aktuellen Ausgabe der Fachzeitschrift Science, die die Forschungsergebnisse als Titelgeschichte präsentiert.

Eine Zelle ist ein komplexes Gebilde mit einem ausgeklügelten Stoffwechsel. Ihr evolutionärer Vorfahr, die Urzelle, bestand hingegen nur aus einer Membran und wenigen Molekülen. Dabei handelte es sich um ein minimalistisches, aber bereits perfekt arbeitendes System.


Unterschiedlich geformte Vesikel/A variety of vesicle shapes. Bild: Christoph Hohmann, Nano Initiative Munich

Zurück zu den Ursprüngen der Zelle lautet daher auch das Motto der Gruppe von TUM-Professor Andreas Bausch, Mitglied des Exzellenzclusters Nanosystems Initiative Munich (NIM), und seiner internationalen Partner. Ihr Traum ist es, mit wenigen Grundzutaten ein einfaches Zellmodell mit einer bestimmten Funktion zu schaffen. Sie folgen damit dem Prinzip der Synthetischen Biologie, die einzelne Zellbausteine zu künstlichen biologischen Systemen mit neuen Eigenschaften zusammenfügt.

Die Vision der Biophysiker und ihrer internationalen Partner ist ein zellähnliches Modell mit einer biomechanischen Funktion. Es soll sich ohne Einfluss von außen von selber aktiv bewegen oder verformen. In ihrer aktuellen Veröffentlichung in Science präsentieren sie, wie ihnen die Umsetzung gelungen ist.

Die Wunderkugel

Das Modell der Biophysiker setzt sich zusammen aus einer Membranhülle, zwei verschiedenen Sorten von Biomolekülen und einer Art Kraftstoff. Die Hülle, auch als Vesikel bezeichnet, besteht aus einer zweischichtigen Lipidmembran, analog zu natürlichen Zellmembranen. Die Vesikel füllen die Wissenschaftler mit Mikrotubuli, einem röhrenförmigen Bestandteil des Zellskelettes, und mit Kinesinmolekülen. Kinesine dienen gewöhnlich in der Zelle als molekulare Motoren, die entlang der Mikrotubuli Zellbausteine transportieren. Im Experiment schieben diese Motoren die Röhrchen permanent aneinander entlang. Dafür benötigen Kinesine den Energieträger ATP, der im Versuchsansatz ebenfalls vorhanden ist.

Die Mikrotubuli-Röhrchen bilden im Experiment physikalisch gesehen direkt unter der Membran einen zweidimensionalen Flüssigkristall, der ständig in Bewegung ist. "Man kann sich diese Flüssigkristallschicht vorstellen wie Baumstämme, die auf einem See treiben", erklärt Felix Keber, Erstautor der Studie. "Wird es zu dicht, ordnen sie sich parallel an und können doch noch aneinander vorbei treiben."

Fehler auf Wanderschaft

Entscheidend für die Deformation der künstlichen Zellkonstruktion ist nun, dass der Flüssigkristall schon im Ruhezustand in Kugelform immer Fehlstellen bilden muss. Mathematiker erklären solche Phänomene mit dem Poincare-Hopf Theorem, oder anschaulich dem "Satz des Igels". Denn so wie man die Stacheln eines Igels nie bürsten kann, ohne dass eine kahle Stelle entsteht, können sich auch die Mikrotubuli nicht komplett gleichmäßig von innen an die Membranwand anlagern. Die Röhrchen stellen sich daher an einige Stellen leicht quer zueinander und dies in einer ganz bestimmten Geometrie. Da sich im Fall des Experiments der Münchner Wissenschaftler die Mikrotubuli durch die Aktivität der Kinesinmoleküle zudem ständig aneinander entlang bewegen, wandern auch die Fehlstellen. Erstaunlicherweise tun sie dies auf eine sehr gleichmäßige und periodische Art und Weise, oszillierend zwischen zwei definierten Anordnungen.

Stachelförmige Fortsätze

Solange der Vesikel eine Kugelform bildet, haben die Fehlstellen noch keinen Einfluss auf die äußere Form der Membran. Aber sobald ihm über Osmose Wasser entzogen wird, beginnt er sich durch die Bewegungen im Inneren zu verformen. Verliert der Vesikel mehr und mehr Wasser, so entstehen aus der überschüssigen Membran sogar stachelförmige Fortsätze, wie sie einige Einzeller zur Fortbewegung nutzen.

Dabei bilden sich faszinierend viele verschiedene Formen und Dynamiken. Was auf den ersten Blick beliebig erscheint, gehorcht in Wahrheit physikalischen Gesetzen. Und so ist es den internationalen Wissenschaftlern gelungen, einige Gesetzmäßigkeiten wie das periodische Verhalten der Vesikel zu entschlüsseln. Auf deren Grundlage lassen sich wiederum Vorhersagen für andere Systeme treffen.

"Mit unserem synthetischen biomolekularen Modell haben wir eine ganz neue Möglichkeit geschaffen, um minimale Zellmodelle zu entwickeln", erklärt Bausch. "Es ist ideal geeignet, um modular die Komplexität zu erhöhen und so kontrolliert zelluläre Prozesse, wie Zellmigration oder Zellteilung, nachzubauen. Dass das künstlich geschaffene System vollständig physikalisch beschrieben werden kann, nährt die Hoffnung, dass wir bei den nächsten Schritten auch die physikalischen Gesetzmäßigkeiten der vielfältigen Zellverformungen entdecken können."

Die Arbeit der Münchner Biophysiker entstand in Zusammenarbeit mit Kollegen der Brandeis University, Waltham, USA, der International School for Advanced Studies, Triest, Italien sowie der Syracuse University, New York, USA.

Publikation:
Topology and dynamics of active nematic vesicles.
Felix C. Keber, Etienne Loiseau, Tim Sanchez, Stephen J. DeCamp, Luca Giomi, Mark J. Bowick, M. Cristina Marchetti, Zvonimir Dogic and Andreas R. Bausch. Science, 5. September 2014.
DOI: 10.1126/science.1254784

Kontakt:
Prof. Andreas Bausch
Technische Universität München
Physik-Department
abausch@ph.tum.de
Tel: + 49 (89) 289-12408

Weitere Informationen:

https://mediatum.ub.tum.de/?id=1229826#1229826 Bilder zum Download

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie