Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Künstliche Zellen machen ihre ersten Schritte

05.09.2014

Mit wenigen Zutaten ist es dem Biophysiker Prof. Andreas Bausch und seinem Team an der Technischen Universität München (TUM) gelungen, ein minimalistisches Zellmodell zu verwirklichen, das sich von ganz alleine verformt und bewegt. Wie sie dieses Ziel umgesetzt haben, beschreiben sie in der aktuellen Ausgabe der Fachzeitschrift Science, die die Forschungsergebnisse als Titelgeschichte präsentiert.

Eine Zelle ist ein komplexes Gebilde mit einem ausgeklügelten Stoffwechsel. Ihr evolutionärer Vorfahr, die Urzelle, bestand hingegen nur aus einer Membran und wenigen Molekülen. Dabei handelte es sich um ein minimalistisches, aber bereits perfekt arbeitendes System.


Unterschiedlich geformte Vesikel/A variety of vesicle shapes. Bild: Christoph Hohmann, Nano Initiative Munich

Zurück zu den Ursprüngen der Zelle lautet daher auch das Motto der Gruppe von TUM-Professor Andreas Bausch, Mitglied des Exzellenzclusters Nanosystems Initiative Munich (NIM), und seiner internationalen Partner. Ihr Traum ist es, mit wenigen Grundzutaten ein einfaches Zellmodell mit einer bestimmten Funktion zu schaffen. Sie folgen damit dem Prinzip der Synthetischen Biologie, die einzelne Zellbausteine zu künstlichen biologischen Systemen mit neuen Eigenschaften zusammenfügt.

Die Vision der Biophysiker und ihrer internationalen Partner ist ein zellähnliches Modell mit einer biomechanischen Funktion. Es soll sich ohne Einfluss von außen von selber aktiv bewegen oder verformen. In ihrer aktuellen Veröffentlichung in Science präsentieren sie, wie ihnen die Umsetzung gelungen ist.

Die Wunderkugel

Das Modell der Biophysiker setzt sich zusammen aus einer Membranhülle, zwei verschiedenen Sorten von Biomolekülen und einer Art Kraftstoff. Die Hülle, auch als Vesikel bezeichnet, besteht aus einer zweischichtigen Lipidmembran, analog zu natürlichen Zellmembranen. Die Vesikel füllen die Wissenschaftler mit Mikrotubuli, einem röhrenförmigen Bestandteil des Zellskelettes, und mit Kinesinmolekülen. Kinesine dienen gewöhnlich in der Zelle als molekulare Motoren, die entlang der Mikrotubuli Zellbausteine transportieren. Im Experiment schieben diese Motoren die Röhrchen permanent aneinander entlang. Dafür benötigen Kinesine den Energieträger ATP, der im Versuchsansatz ebenfalls vorhanden ist.

Die Mikrotubuli-Röhrchen bilden im Experiment physikalisch gesehen direkt unter der Membran einen zweidimensionalen Flüssigkristall, der ständig in Bewegung ist. "Man kann sich diese Flüssigkristallschicht vorstellen wie Baumstämme, die auf einem See treiben", erklärt Felix Keber, Erstautor der Studie. "Wird es zu dicht, ordnen sie sich parallel an und können doch noch aneinander vorbei treiben."

Fehler auf Wanderschaft

Entscheidend für die Deformation der künstlichen Zellkonstruktion ist nun, dass der Flüssigkristall schon im Ruhezustand in Kugelform immer Fehlstellen bilden muss. Mathematiker erklären solche Phänomene mit dem Poincare-Hopf Theorem, oder anschaulich dem "Satz des Igels". Denn so wie man die Stacheln eines Igels nie bürsten kann, ohne dass eine kahle Stelle entsteht, können sich auch die Mikrotubuli nicht komplett gleichmäßig von innen an die Membranwand anlagern. Die Röhrchen stellen sich daher an einige Stellen leicht quer zueinander und dies in einer ganz bestimmten Geometrie. Da sich im Fall des Experiments der Münchner Wissenschaftler die Mikrotubuli durch die Aktivität der Kinesinmoleküle zudem ständig aneinander entlang bewegen, wandern auch die Fehlstellen. Erstaunlicherweise tun sie dies auf eine sehr gleichmäßige und periodische Art und Weise, oszillierend zwischen zwei definierten Anordnungen.

Stachelförmige Fortsätze

Solange der Vesikel eine Kugelform bildet, haben die Fehlstellen noch keinen Einfluss auf die äußere Form der Membran. Aber sobald ihm über Osmose Wasser entzogen wird, beginnt er sich durch die Bewegungen im Inneren zu verformen. Verliert der Vesikel mehr und mehr Wasser, so entstehen aus der überschüssigen Membran sogar stachelförmige Fortsätze, wie sie einige Einzeller zur Fortbewegung nutzen.

Dabei bilden sich faszinierend viele verschiedene Formen und Dynamiken. Was auf den ersten Blick beliebig erscheint, gehorcht in Wahrheit physikalischen Gesetzen. Und so ist es den internationalen Wissenschaftlern gelungen, einige Gesetzmäßigkeiten wie das periodische Verhalten der Vesikel zu entschlüsseln. Auf deren Grundlage lassen sich wiederum Vorhersagen für andere Systeme treffen.

"Mit unserem synthetischen biomolekularen Modell haben wir eine ganz neue Möglichkeit geschaffen, um minimale Zellmodelle zu entwickeln", erklärt Bausch. "Es ist ideal geeignet, um modular die Komplexität zu erhöhen und so kontrolliert zelluläre Prozesse, wie Zellmigration oder Zellteilung, nachzubauen. Dass das künstlich geschaffene System vollständig physikalisch beschrieben werden kann, nährt die Hoffnung, dass wir bei den nächsten Schritten auch die physikalischen Gesetzmäßigkeiten der vielfältigen Zellverformungen entdecken können."

Die Arbeit der Münchner Biophysiker entstand in Zusammenarbeit mit Kollegen der Brandeis University, Waltham, USA, der International School for Advanced Studies, Triest, Italien sowie der Syracuse University, New York, USA.

Publikation:
Topology and dynamics of active nematic vesicles.
Felix C. Keber, Etienne Loiseau, Tim Sanchez, Stephen J. DeCamp, Luca Giomi, Mark J. Bowick, M. Cristina Marchetti, Zvonimir Dogic and Andreas R. Bausch. Science, 5. September 2014.
DOI: 10.1126/science.1254784

Kontakt:
Prof. Andreas Bausch
Technische Universität München
Physik-Department
abausch@ph.tum.de
Tel: + 49 (89) 289-12408

Weitere Informationen:

https://mediatum.ub.tum.de/?id=1229826#1229826 Bilder zum Download

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Geteiltes Denken ist doppeltes Denken
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht Neue CRISPR-Methode enthüllt Genregulation einzelner Zellen
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flashmob der Moleküle

19.01.2017 | Physik Astronomie

Tollwutviren zeigen Verschaltungen im gläsernen Gehirn

19.01.2017 | Medizin Gesundheit

Fraunhofer-Institute entwickeln zerstörungsfreie Qualitätsprüfung für Hybridgussbauteile

19.01.2017 | Verfahrenstechnologie