Künstliche Organellen verwandeln freie Radikale in Wasser und Sauerstoff

Freie Sauerstoffradikale entstehen entweder im Körper als Nebenprodukt des Stoffwechsels, aber auch durch Umwelteinflüsse wie UV-Strahlung und Abgase. Ist ihre Konzentration im Organismus so erhöht, dass der natürliche Schutzmechanismus mit der Entgiftung überfordert ist, entsteht oxidativer Stress, der mit der Entstehung von verschiedenen Krankheiten wie Krebs oder Arthritis in Verbindung gebracht wird.

Normalerweise werden die aggressiven Moleküle durch körpereigene Antioxidantien in Schach gehalten. Dabei spielen sich in der Zelle befindliche Organellen, sogenannte Peroxisome, eine wichtige Rolle, da sie helfen, die Konzentration der freien Sauerstoffradikalen zu regulieren.

Nanokapseln verwandeln Radikale in Wasser und Sauerstoff
Der Forschungsgruppe um Prof. Cornelia Palivan vom Departement Chemie der Universität Basel ist nun die Herstellung von künstlichen Peroxisomen gelungen, die das natürliche Organell imitieren. Die Forschenden entwickelten ein auf polymeren Nanokapseln basierendes Zellorganell, in das zwei verschiedene Arten von Enzymen eingeschlossen sind, welche freie Sauerstoffradikale zu Wasser und Sauerstoff umwandeln können.

Um die Funktionsweise in der Zelle zu überprüfen, wurde die Membran der künstlichen Peroxisome, die für den Austausch von Substraten und Produkten genutzt wird, mit Membranproteinen versehen. Die Resultate zeigen, dass die künstlichen Peroxisome von der Zelle aufgenommen werden und dort sehr effizient die natürlichen Peroxisome im Entgiftungsprozess unterstützen.

Neuartige Medikamente
Diese Art von Wirkprinzip stellt einen wichtigen Schritt für die Entwicklung neuartiger Medikamente dar, da sie direkt auf zellulärer Ebene in die Störung des Systems eingreift und somit im Sinne der personalisierten Medizin eine am Patienten orientierte Behandlung ermöglichen könnte.
Originalbeitrag
Pascal Tanner, Vimalkumar Balasubramanian, and Cornelia G. Palivan
Aiding Nature's Organelles: Artificial Peroxisomes Play Their Role
Nano Lett., 2013, 13 (6), pp 2875–2883 | doi: 10.1021/nl401215n
Weitere Auskünfte
Prof. Cornelia G. Palivan, Universität Basel, Departement Chemie, Tel. +41 61 267 38 39, E-Mail: Cornelia.Palivan@unibas.ch
Weitere Informationen:
http://dx.doi.org/10.1021/nl401215n – Abstract

Media Contact

Reto Caluori Universität Basel

Weitere Informationen:

http://www.unibas.ch

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer