Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Künstliche Enzyme werden immer «natürlicher»

30.08.2016

Wissenschaftler der Universität Basel, der ETH Zürich und des NCCR Molecular Systems Engineering haben ein künstliches Metalloenzym entwickelt, das innerhalb einer lebenden Zelle eine Reaktion katalysiert, die so in der Natur nicht vorkommt. Mit solchen Enzymen könnten erstmals neue nicht-natürliche Stoffwechselwege in lebenden Zellen erschaffen werden. Die Arbeit wurde in der Zeitschrift Nature veröffentlicht.

Das künstliche Metalloenzym mit Namen biot-Ru-SAV wurde mit der sogenannten Biotin-Streptavidin-Technologie hergestellt. Dieses oft genutzte Verfahren beruht auf der starken Wechselwirkung zwischen dem Protein Streptavidin und dem Vitamin Biotin.


Darstellung der Alkenmetathese-Reaktion in E.coli mit einem rutheniumbasierten künstlichen Metalloenzym zur Herstellung neuer Chemikalien mit hohem Mehrwert.

Bild: NCCR Molecular Systems Engineering

Durch Bindung an Biotin kann man weitere Komponenten in das Protein einschleusen und so ein künstliches Enzym erzeugen. In der vorliegenden Arbeit wurde eine sogenannte metallorganische Verbindung gewählt, in der mindestens ein Kohlenstoffatom an ein Metallatom gebunden ist.

Derartige Verbindungen werden oft als Katalysatoren in industriellen Prozessen verwendet, zeigen jedoch in wässrigen Lösungen oder in einem zellähnlichen Milieu keine oder nur eine geringe katalytische Funktion. Um diese Funktionseinschränkungen zu überwinden, müssen solche Katalysatoren in Gerüstproteine, wie zum Beispiel Streptavidin, eingebunden werden.

«Unser Ziel war es, ein künstliches Metalloenzym zu entwickeln, das eine Alkenmetathese katalysieren kann. Diese Reaktion findet sich nicht im Repertoire natürlicher Enzyme», sagt Thomas R. Ward, Professor am Departement Chemie der Universität Basel. Die Alkenmetathese ist ein Verfahren zur Bildung und Umverteilung von Kohlenstoff-Kohlenstoff-Doppelbindungen, das sowohl in der Forschung als auch in der industriellen Grossproduktion verschiedener chemischer Produkte breite Anwendung findet.

Biot-Ru-SAV katalysiert eine Reaktion, bei der eine ringförmige Verbindung gebildet wird. Wegen ihrer fluoreszierenden Eigenschaften kann diese bei der Analyse einfach detektiert und quantifiziert werden.

Periplasma als Reaktionsraum

Das Milieu innerhalb einer lebenden Zelle ist jedoch bei weitem nicht ideal für das reibungslose Funktionieren metallorganyl-basierter Enzyme. «Der Durchbruch kam mit der Idee, das Periplasma von Escherichia coli als Reaktionsraum zu verwenden. Dieses Milieu ist für einen Alkenmetathesekatalysator viel besser geeignet», sagt Markus Jeschek, ein Forscher aus dem Labor von Sven Panke, Professor am Departement für Biosysteme, ETH Zürich in Basel. Das Periplasma ist ein Zellkompartiment zwischen der inneren Cytoplasmamembran und der äusseren Membran gramnegativer Bakterien und enthält nur eine niedrige Konzentrationen von Inhibitoren der Metalloenzyme, wie zum Beispiel Glutathion.

Nachdem sie die idealen in vivo Bedingungen für ihr Enzym gefunden hatten, gingen die Wissenschaftler noch einen Schritt weiter und optimierten biot-Ru-SAV durch sogenannte gerichtete Evolution. Diese Methode imitiert natürliche Prozesse zur Optimierung und Veränderung von Proteinen und deren Eigenschaften. «Wir konnten so ein einfaches und robustes Screening-Verfahren entwickeln, mit dem wir Tausende von biot-Ru-SAV-Mutanten testen und die aktivste Variante identifizieren konnten», erklärt Ward.

Den Wissenschaftlern ist es nicht nur gelungen, die katalytischen Eigenschaften von biot-Ru-SAV zu verbessern. Sie konnten auch zeigen, dass metallorganyl-basierte Enzyme verändert und optimiert werden können, um eine Vielzahl verschiedener chemischer Produkte herzustellen. «Das Spannende daran ist, dass künstliche Metalloenzyme wie biot-Ru-SAV dazu verwendet werden können, um neue Chemikalien mit hohem Mehrwert zu produzieren», sagt Ward. «Das hat ein grosses Potential zur Vereinigung chemischer und biologischer Werkzeuge, um letztendlich Zellen als molekulare Fabriken zu nutzen.»

Originalbeitrag

Markus Jeschek, Raphael Reuter, Tillmann Heinisch, Christian Trindler, Juliane Klehr, Sven Panke & Thomas R. Ward
Directed evolution of artificial metalloenzymes for in vivo metathesis
Nature (2016), doi: 10.1038/nature19114

Weitere Auskünfte
• Prof. Thomas R. Ward, Universität Basel, Departement Chemie, Tel. +41 61 267 10 04, E-Mail: thomas.ward@unibas.ch
• Prof. Sven Panke, ETH Zürich, Department of Biosystems Science and Engineering, Tel. +41 61 387 32 09, E-Mail: sven.panke@bsse.ethz.ch

Weitere Informationen:

http://www.nccr-mse.ch

Reto Caluori | Universität Basel
Weitere Informationen:
http://www.unibas.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wasserbewegung als Hinweis auf den Zustand von Tumoren
19.04.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Verbesserte Stabilität von Kunststoff-Leuchtdioden
19.04.2018 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics