Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Künstliche Enzyme aus dem Schülerlabor

23.09.2010
Immer mehr Wissenschaftler beschäftigen sich mit der Herstellung synthetischer Proteine.

Kürzlich hat ein Gemeinschaftsprojekt von Schule und Wissenschaft ein weltweit einmaliges Ergebnis hervorgebracht: Mit Hilfe von Nediljko Budisa, Forscher am Max-Planck-Institut für Biochemie (MPIB) in Martinsried bei München, ist es Schülerinnen und Schülern aus Österreich gelungen, ein funktionstüchtiges Protein der Verdauung, das Enzym Amylase, mit zwei künstlichen Aminosäuren herzustellen.

Das Projekt ist von großer wissenschaftlicher Bedeutung und wurde bereits mehrfach ausgezeichnet. Jetzt stellen die Nachwuchswissenschaftler ihre Ergebnisse auf dem EU Contest for Young Scientists in Lissabon vor.

Proteine sind die Hauptakteure in unserem Körper und erfüllen zahlreiche Aufgaben: Als Bestandteile unseres Immunsystems wehren sie Krankheitserreger ab, dienen als Botenstoffe der Signalübertragung oder bringen als Enzyme verschiedene Prozesse in Gang.

Sie alle werden aus Aminosäuren aufgebaut, deren Abfolge bereits in der Erbinformation festgelegt ist. 20 Aminosäuren bilden den Standardsatz, aus dem Proteine entstehen. In der Natur jedoch treten mehrere hundert verschiedene Aminosäuren auf und neue Varianten können zudem im Labor hergestellt werden. Diese synthetischen Aminosäuren unterscheiden sich von den 20 Standard-Aminosäuren, sodass durch ihren Einbau in Proteine bestimmte Eigenschaften eines Proteins gezielt verändert werden können. Die Wissenschaft, die sich der Herstellung von Proteinen nach Maß widmet, nennen die Forscher Synthetische Biologie (SynBio).

Initiiert und unterstützt von Nediljko Budisa führte die Höhere Land- und Forstwirtschaftliche Schule (HLFS) in Ursprung, Österreich, kürzlich ein Projekt zur Synthetischen Biologie durch: Amylase 2.0. Im Rahmen dieses Projekts gelang es den Schülerinnen und Schülern, ein funktionstüchtiges Protein der Verdauung, das Enzym Amylase, mit zwei künstlichen Aminosäuren zu kreieren, das sogar aktiver ist als die natürliche Variante. „Dieser Erfolg ist weltweit einmalig und daher ein großer Fortschritt auf dem Gebiet der SynBio“, so Budisa.

Die Amylase ist Bestandteil unseres Speichels. Sie baut Stärke ab, sodass daraus Zucker entsteht, den der Körper dann weiterverarbeiten kann. Das Enzym wird auch in der Industrie vielfach eingesetzt, zum Beispiel beim Bierbrauen oder zur Herstellung von Bioethanol aus Biomasse. „Hier könnte künftig viel Energie eingespart werden, wenn die Amylase effektiver und schon bei niedrigeren Temperaturen arbeiten würde“, hofft Schülerin Simone Reiter. Dadurch konnten die Schülerinnen und Schüler zeigen, wie wichtig die SynBio bald für die Wirtschaft sein könnte. Doch ihre Ergebnisse sind auch für die Wissenschaft von großer Bedeutung. So wird sich Nediljko Budisa, seit Mai Professor am Institut für Chemie der TU Berlin, im Rahmen des Exzellenzclusters „Unifying Concepts in Catalysis“ (UniCat) auch in Zukunft mit der künstlich hergestellten Amylase beschäftigen. Am MPIB werden die Ergebnisse ebenfalls weiter erforscht.

Budisa und das MPIB unterstützten das Projekt, indem sie Fachwissen und Laborräume zur Verfügung stellten. Doch nicht nur die österreichischen Jungforscher profitierten von der Zusammenarbeit, sondern auch Budisa und sein Team. Der Wissenschaftler ist begeistert: „Wir waren ganz erstaunt, mit welchem Engagement die Schülerinnen und Schüler ans Werk gingen. Deshalb war es für uns eine tolle und außergewöhnliche Erfahrung, mit diesen jungen Leuten gemeinsam im Labor zu arbeiten und Ergebnisse zu analysieren, zu interpretieren und auch kritisch zu diskutieren.“

Das Projekt war und ist ein voller Erfolg: Amylase 2.0 gewann bereits den ersten Preis in der Kategorie Klimaschutz bei „Jugend innovativ“, dem österreichischen Pendant zu „Jugend forscht“ und wird am 13. Dezember mit dem Schulforschungspreis „Sparkling Science“ ausgezeichnet. Derzeit stellen die Schülerinnen und Schüler ihr Projekt auf dem „EU Contest for Young Scientists“ in Lissabon vor, dem EU-weiten „Jugend forscht“, wo sie ebenfalls auf eine Auszeichnung hoffen. [UD]

Kontakt:
Prof. Dr. Konrad Steiner
HLFS-Ursprung
PR-Kustos
Ursprungstraße 4
A-5161 Elixhausen
Tel. ++43/662-480301-0
E-mail: konrad.steiner@sbg.ac.at
Prof. Dr. Nediljko Budisa
Technische Universität Berlin
Institut für Chemie
Straße des 17. Juni 124
10623 Berlin
Tel. +49/30-314-23661
E-mail: budisa@chem.tu-berlin.de
Anja Konschak
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel. ++49/89-8578-2824
E-mail: konschak@biochem.mpg.de

Anja Konschak | Max-Planck-Institut
Weitere Informationen:
http://www.biochem.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise