Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Künstliche Enzyme aus dem Schülerlabor

23.09.2010
Immer mehr Wissenschaftler beschäftigen sich mit der Herstellung synthetischer Proteine.

Kürzlich hat ein Gemeinschaftsprojekt von Schule und Wissenschaft ein weltweit einmaliges Ergebnis hervorgebracht: Mit Hilfe von Nediljko Budisa, Forscher am Max-Planck-Institut für Biochemie (MPIB) in Martinsried bei München, ist es Schülerinnen und Schülern aus Österreich gelungen, ein funktionstüchtiges Protein der Verdauung, das Enzym Amylase, mit zwei künstlichen Aminosäuren herzustellen.

Das Projekt ist von großer wissenschaftlicher Bedeutung und wurde bereits mehrfach ausgezeichnet. Jetzt stellen die Nachwuchswissenschaftler ihre Ergebnisse auf dem EU Contest for Young Scientists in Lissabon vor.

Proteine sind die Hauptakteure in unserem Körper und erfüllen zahlreiche Aufgaben: Als Bestandteile unseres Immunsystems wehren sie Krankheitserreger ab, dienen als Botenstoffe der Signalübertragung oder bringen als Enzyme verschiedene Prozesse in Gang.

Sie alle werden aus Aminosäuren aufgebaut, deren Abfolge bereits in der Erbinformation festgelegt ist. 20 Aminosäuren bilden den Standardsatz, aus dem Proteine entstehen. In der Natur jedoch treten mehrere hundert verschiedene Aminosäuren auf und neue Varianten können zudem im Labor hergestellt werden. Diese synthetischen Aminosäuren unterscheiden sich von den 20 Standard-Aminosäuren, sodass durch ihren Einbau in Proteine bestimmte Eigenschaften eines Proteins gezielt verändert werden können. Die Wissenschaft, die sich der Herstellung von Proteinen nach Maß widmet, nennen die Forscher Synthetische Biologie (SynBio).

Initiiert und unterstützt von Nediljko Budisa führte die Höhere Land- und Forstwirtschaftliche Schule (HLFS) in Ursprung, Österreich, kürzlich ein Projekt zur Synthetischen Biologie durch: Amylase 2.0. Im Rahmen dieses Projekts gelang es den Schülerinnen und Schülern, ein funktionstüchtiges Protein der Verdauung, das Enzym Amylase, mit zwei künstlichen Aminosäuren zu kreieren, das sogar aktiver ist als die natürliche Variante. „Dieser Erfolg ist weltweit einmalig und daher ein großer Fortschritt auf dem Gebiet der SynBio“, so Budisa.

Die Amylase ist Bestandteil unseres Speichels. Sie baut Stärke ab, sodass daraus Zucker entsteht, den der Körper dann weiterverarbeiten kann. Das Enzym wird auch in der Industrie vielfach eingesetzt, zum Beispiel beim Bierbrauen oder zur Herstellung von Bioethanol aus Biomasse. „Hier könnte künftig viel Energie eingespart werden, wenn die Amylase effektiver und schon bei niedrigeren Temperaturen arbeiten würde“, hofft Schülerin Simone Reiter. Dadurch konnten die Schülerinnen und Schüler zeigen, wie wichtig die SynBio bald für die Wirtschaft sein könnte. Doch ihre Ergebnisse sind auch für die Wissenschaft von großer Bedeutung. So wird sich Nediljko Budisa, seit Mai Professor am Institut für Chemie der TU Berlin, im Rahmen des Exzellenzclusters „Unifying Concepts in Catalysis“ (UniCat) auch in Zukunft mit der künstlich hergestellten Amylase beschäftigen. Am MPIB werden die Ergebnisse ebenfalls weiter erforscht.

Budisa und das MPIB unterstützten das Projekt, indem sie Fachwissen und Laborräume zur Verfügung stellten. Doch nicht nur die österreichischen Jungforscher profitierten von der Zusammenarbeit, sondern auch Budisa und sein Team. Der Wissenschaftler ist begeistert: „Wir waren ganz erstaunt, mit welchem Engagement die Schülerinnen und Schüler ans Werk gingen. Deshalb war es für uns eine tolle und außergewöhnliche Erfahrung, mit diesen jungen Leuten gemeinsam im Labor zu arbeiten und Ergebnisse zu analysieren, zu interpretieren und auch kritisch zu diskutieren.“

Das Projekt war und ist ein voller Erfolg: Amylase 2.0 gewann bereits den ersten Preis in der Kategorie Klimaschutz bei „Jugend innovativ“, dem österreichischen Pendant zu „Jugend forscht“ und wird am 13. Dezember mit dem Schulforschungspreis „Sparkling Science“ ausgezeichnet. Derzeit stellen die Schülerinnen und Schüler ihr Projekt auf dem „EU Contest for Young Scientists“ in Lissabon vor, dem EU-weiten „Jugend forscht“, wo sie ebenfalls auf eine Auszeichnung hoffen. [UD]

Kontakt:
Prof. Dr. Konrad Steiner
HLFS-Ursprung
PR-Kustos
Ursprungstraße 4
A-5161 Elixhausen
Tel. ++43/662-480301-0
E-mail: konrad.steiner@sbg.ac.at
Prof. Dr. Nediljko Budisa
Technische Universität Berlin
Institut für Chemie
Straße des 17. Juni 124
10623 Berlin
Tel. +49/30-314-23661
E-mail: budisa@chem.tu-berlin.de
Anja Konschak
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel. ++49/89-8578-2824
E-mail: konschak@biochem.mpg.de

Anja Konschak | Max-Planck-Institut
Weitere Informationen:
http://www.biochem.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie